DOCUMENT CONTROL SYSTEM - CORRESPONDENCE FILE WELDON SPRING SITE REMEDIAL ACTION PROJECT Document Number: __ MK-FERGUSON CO., INC. WO 3589 (314) 441-8086 Document Type: LL DOEW -/WOWE 7295 Highway 94 South St. Charles, MO 63303 SUBJECT Transmitts of Site Soil Permeability Data AUTHOR Van Firsten, J.S. to Berlan, D.E. DATE 12/2/92, REFERENCED DOCUMENT(S) THIS IS A RESPONSE TO COMMUNICATION: NUMBER _____ DATED ACTION ITEM TRACKING INITIATE ACTION ITEM INDIVIDUAL ASSIGNED TO ACTION ______ DEPARTMENT _____ ACTION REQUIRED ____ DUE DATE / / ACTION ITEM LOG NUMBER ____ IF ADDITIONAL ACTION ITEMS ARE ATTACHED, HOW MANY? CLOSE ACTION ITEM IS THIS A RESPONSE TO AN ACTION ITEM? NO ____ YES ____ ACTION ITEM LOG NUMBER _____ CLOSING DOCUMENT DIN ____ COMPLETION DATE _____ APPROVAL __ COMMENTS _ ATTACH APPRVL ROUTE ATTACH APPRVL.ROUTE DISTRIBUTION W W/O ORDER INITIAL DISTRIBUTION W W/O ORDER INITIAL DISTRIBUTION W W/O J.R. Powers M.R. Lewis R.R. Tucker J.E. Williams S.H. McCracken D.E. Steffen K.A. Heyer J.S. VanFossen M.R. Ankrom G.A. Newtown C.R. Bowers W.K. Love J.A. Cooney J.E. Enright R.D. Ferguson K.D. Lawer S.W. Green A. Gibson K.M. Greenwell Reading File E.R. Valdez P.D. Cate Admin. Record/ENV COMP K.A. Reed K.D. Jenkins Tech Editor

J.M. Richmond

M.B. Ballew

S. Richardson

DOCUMENT CONTROL

ORIGINATOR:

J.E. Hckee

M.E. Nelson

Newton

Dr. David E. Bedan
Division of Environmental Quality
Missouri Department of Natural Resources
Post Office Box 176
Jefferson City, Missouri 65102

Dear Dr. Bedan:

TRANSMITTAL OF SITE SOIL PERMEABILITY DATA

A technical memorandum from the Project Management Contractor (PMC) staff is enclosed for your information and review. This document outlines the results of recent data gathering activities relating to leachate permeability of site soils at the Weldon Spring Site. Specific data collected includes:

- Laboratory permeability testing of undisturbed soils with both water and synthesized leachate as a permeant, performed to assess the effects of leachate on permeability.
- Field permeability testing of insitu site soils using a two-state borehole (TSB) procedure.

General conclusions from this effort include:

- Results of TSB testing indicate that in situ hydraulic conductivity is not affected by macropore features such as cracks or fractures.
- Logarithimic mean field permeability values (TSB results) range from 1.28 E⁻⁰⁸ to 3.34 E⁻⁰⁹ (cm/s).
- Hydraulic conductivity values obtained under recent efforts are consistent with prior data, and support the suitability of the proposed area for a disposal site.
- Synthesized leachate has no detectable effect on permeability. Logarithmic mean hydraulic conductivity values range from 1.26 E⁻⁰⁹ cm/s (leachate) to 1.66 E⁻⁰⁹ cm/s
- These values indicate that a 20 ft layer of site clay soils will retard the migration of hazardous constituents contained in the waste to at least the same degree that 30 ft of material having a coefficient of permeability of 1.0 E⁻⁰⁷ cm/s would retard the

ATE SYMECL م_برت:2:2 STE SYMECE يت توجيد ATT SYMBOL ATHEETIG. בופעינים ביד XT41.5377. <u> -</u>2.≅ ATT STYLEGE NEAR SEE 24.72 ATT SYMECL يتحكيد تامد 2.7 ATT SYLECT يتناويون المراجع T.A.

ATT STUBCL

يت و و الم

CNCHRENCES

This information was collected at the request of the MDNR technical staff. A technical memorandum is enclosed that includes data interpretation, data tables, technical references, example calculations, and graphical presentations of the data. A formal report will be

If you have any questions please contact Ken Lawver of my staff at (314)441-8978.

Sincerely,

Jerry S. Van Fossen Deputy Project Manager Weldon Spring Site Remedial Action Project

for

Enclosure: As stated

w/enclosure:
Dan Wall, EPA
Mimi Garstang, MDNR-DGLS

EW-94:KLawver:x7003:emh:12/1/92 (m:SoilPerm.let)

CHOCARENCES	
ALS STMECT	
£₩-94	
	-
KLawver	
12// /92	
STE SYMBOL	į
EW-949	
JWingossen	Į
De la companya della companya della companya de la companya della	ŀ
12/2/92	
היש אישפכנ	
B	į
2000EG	į
\$20%	
j	
FTC SYMECE	
NTALESTA.	
23	
•	
ALS STAROL	
NEALESSE.	
2478	
-1.6	
ATT STWEEL	
•	
wintered	
27.25	
ATE STREET	
Seller State	
مندوسات مند	
2478	
	٠

ATE SYMBOL

												777
DOC DOC	UMI	EN'	T C	ONTI	ROL SYSTEM	- CO	RR	ESP	OND	ENCE FILE	FFM3028	
WELDON SPRING MK-FERGUSON C								NT NU! NT TYI		OIN) 239 LR-MCFW.	32 1982	<u>۔</u> دی
7295 HIGHWAY 94 SO						•		TORS D				_
ST. CHARLES, MO 633	04 .		^		Ca. D					loto T. VI		
SUBJECT CO	smi	tt.	<u>al</u>		xto sal 1	orme	0-0	xll	4	ata To the		_
Missouri	- 17	B	+ c	101	natural Re	<u> 20) W</u>	<u>ره.</u> ا	<u> </u>				-
FROM JRPC	N. Se.	م		<u> </u>	фто <u>≥ (Т)</u>	1°CM	re	مده				
SUBJECT CODE/WOR	K PAC	KAC	BE NUM	BER _	7-600	LU				•		_
REFERENCED DOCU	MENT(S)							-			_
THIS IS A DESDONSE	TOCO	мм	UNICA	TION: N	UMBER					DATED		
THIS IS A RESPONSE	1000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ACTION ITEM							_
INITIATE ACTION IT	EM				•	· · · · · · · · · · · · · · · · · · ·						
INDIVIDUAL ASSI	GNED T	ΟA	.CTION		· · · · · · · · · · · · · · · · · · ·			D	EPARTI	MENT		-
ACTION REQUIRE	D											_
=					ACTION ITEM							-
					CHED, HOW MANY?							<u></u>
CLOSE ACTION ITE		•			, · · · · -							
		4 B.T.	A CTTO	i presen	NOYES .							
=							אור					
					CLOSING DOC					-		
COMPLETION DA	TE	_			APPROVAL _					=		
COMMENTS							<u> </u>	.,		_		
								·				-
												-
	ATTA	CH	APPRO ROUT			AT	TACHL	APPRO ROUT		DISTRIBUTION	ATT/	
DISTRIBUTION	W Y	N/O	ORDER	INITIAL	DISTRIBUTION	- W	W/O	ORDER	INITIAL	DOE	W	W/C
J.R. POWERS R.R. TUCKER	+	-+	7	West of the second	K.A. MEYER	-				S.H. McCRACKEN		Γ
D.E. STEFFEN	1	1		/ - 		\neg	П			J.S. VANPOSSEN	1	
M.R. ANKROM	11									G.A. NEWTOWN		Ĺ
C.R. BOWERS					CHOMEN	H	1			W.K. LOVE		L
J.A. COONEY		\Box			Nobilbon		4✓			J.E. ENRIGHT		L
R.D. FERGUSON		4		ROF		-	+	<u> </u>	<u> </u>	K.D. LAWVER		\vdash
s.w. green		1					1-			A. GIBSON		H
K.M. GREENWELL	-			 	DEADNIG ST. P.		+-			E.R. VALDEZ K.A. REED		H
P.D. CATE					READING FILE ADMIN. RECORD/ENV, COM	œ.	+	 		J.M. RICHMOND	+	t
K.D. JENKINS		Н		-	2 copies	<u> </u>	+	2	m£	MB. BALLEW	-	t
J.E. McKEE				Ļ	TECH EDITOR as Con	enca	+	-`	MAX	N.D. DALLEY	-	+
De Mixeon	1		r]		ı			1 /	S. RICHARDSON	- 1	1
D.S. HIXSON F.S. NEWTON		7					+		'	S. RICHARDSON	\dashv	\dagger
D.S. HIXSON F.S. NEWTON M.R. LEWIS		7							/	S. RICHARDSON		+

ENGINEERS AND CONSTRUCTORS

MK-FERGUSON COMPANY

A MORRISON KNUDSEN COMPANY

WELDON SPRING REMEDIAL ACTION PROJECT 7295 HIGHWAY 94 SOUTH ST. CHARLES, MISSOURI 63303 PHONE: (314) 441-8086

November 24, 1992

U. S. Department of Energy
Weldon Spring Site Remedial Action Project
ATTN: Mr. Stephen H. McCracken
Project Manager
7295 Highway 94 South
St. Charles, MO 63304

SUBJECT: Contract No. DE-AC05-860R21548

TRANSMITTAL OF SITE SOIL PERMEABILITY DATA TO THE MISSOURI DEPARTMENT OF NATURAL RESOURCES.

Dear Mr. McCracken:

Information from recent data gathering activities relating to permeability of undisturbed site soils is attached. This data was collected at the recommendation of the MDNR/DGLS technical staff, and relates to the technical requirements for hazardous waste landfill siting standards as presented in 10 CSR 25-7. Although this regulation is not considered applicable, we have agreed to utilize these requirements to develop design criteria, including the use of engineered fill to meet these standards. Specific data collected include:

- Laboratory permeability testing of undisturbed soils with both water and synthesized leachate as a permeant, performed to assess the effects of leachate on permeability.
- Field permeability testing of insitu site soils using a two-stage borehole (TSB) procedure.

General conclusions from these data are as follows:

- Results of TSB testing indicate that in situ hydraulic conductivity is not affected by macropore features such as cracks or fractures.
- Logarithmic mean field permeability values (TSB results) range from 1.28 E^{-08} to 3.34 E^{-09} (cm/s).

MK-FERGUSON COMPANY A MORRISON KNUDSEN COMPANY

Page 2 TRANSMITTAL OF SITE SOIL PERMEABILITY DATA TO THE MO. DEPT. OF NATURAL RESOURCES.

- Hydraulic conductivity values obtained under recent efforts are consistent with prior data, and support the suitability of the proposed area for a disposal site.
- Synthesized leachate has no detectable effect on permeability. Logarithmic mean hydraulic conductivity values range from 1.26 E^{-09} cm/s (leachate) to 1.66 E^{-09} cm/s (water).
- These values indicate that a 20 ft layer of site clay soils will retard the migration of hazardous constituents contained in the waste to at least the same degree that 30 ft of material having a coefficient of permeability of 1.0 E-07 cm/s would retard the migration of water.

A technical memorandum is attached that includes data interpretation, data tables, technical references, example calculations, and graphical presentations of the data. A formal report will be forthcoming.

Please transmit this information to the MDNR and the EPA. A draft letter of transmittal is included for your use. A copy of this letter with attachments will be placed into the administrative record. Please contact Rick Ferguson or Ken Warbritton of my staff should you have any questions.

Sincerely,

James R. Powers Project Director

JRP/krw/kem

Attachment

cc: Walker K. Love

Department of Energy

Oak Ridge Operations Weldon Spring Site Remedial Action Project Office 7295 Highway 94 South St. Charles, Missouri 63304

December 2, 1992

Dr. David E. Bedan Division of Environmental Quality Missouri Department of Natural Resources Post Office Box 176 Jefferson City, Missouri 65102

Dear Dr. Bedan:

TRANSMITTAL OF SITE SOIL PERMEABILITY DATA

A technical memorandum from the Project Management Contractor (PMC) staff is enclosed for your information and review. This document outlines the results of recent data gathering activities relating to leachate permeability of site soils at the Weldon Spring Site. Specific data collected includes:

- Laboratory permeability testing of undisturbed soils with both water and synthesized leachate as a permeant, performed to assess the effects of leachate on permeability.
- Field permeability testing of insitu site soils using a two-state borehole (TSB) procedure.

General conclusions from this effort include:

- Results of TSB testing indicate that in situ hydraulic conductivity is not affected by macropore features such as cracks or fractures.
- Logarithimic mean field permeability values (TSB results) range from 1.28 E⁻⁰⁸ to 3.34 E⁻⁰⁹ (cm/s).
- Hydraulic conductivity values obtained under recent efforts are consistent with prior data, and support the suitability of the proposed area for a disposal site.
- Synthesized leachate has no detectable effect on permeability. Logarithmic mean hydraulic conductivity values range from 1.26 E⁻⁰⁹ cm/s (leachate) to 1.66 E⁻⁰⁹ cm/s (water).
- These values indicate that a 20 ft layer of site clay soils will retard the migration of hazardous constituents contained in the waste to at least the same degree that 30 ft of material having a coefficient of permeability of 1.0 E⁻⁰⁷ cm/s would retard the migration of water.

This information was collected at the request of the MDNR technical staff. A technical memorandum is enclosed that includes data interpretation, data tables, technical references, example calculations, and graphical presentations of the data. A formal report will be forthcoming.

If you have any questions please contact Ken Lawver of my staff at (314)441-8978.

Sincerely,

Jerry S. Van Fossen

Deputy Project Manager

Weldon Spring Site

Remedial Action Project

Enclosure: As stated

cc w/enclosure: Dan Wall, EPA Mimi Garstang, MDNR-DGLS

DATE:

November 23, 1992

TO:

R. Ferguson

FROM:

Kenyon Warbritton/Jeff Carman

SUBJECT:

TECHNICAL MEMORANDUM PRESENTING RESULTS OF RECENT LABORATORY AND FIELD PERMEABILITY TESTS.

The PMC has recently completed Two-Stage Borehole (TSB) field permeability testing performed at the request of MDNR/DGLS personnel. These tests were performed on the Ferrelview Formation and clay till unit at locations within the Disposal Facility Study Area.

An additional testing program, triaxial permeability testing of small undisturbed samples, is nearly complete. These tests were performed using both water and a synthesized leachate as a permeant. This program is not yet finalized, however key findings are available at this time for review by interested parties.

Samples of these test programs were obtained in accordance with "Sampling Plan for Determination of Hydraulic Properties of Undisturbed Soils in the Weldon Spring Disposal Facility Study Area", Rev. 1, MK-JEG, Oct. 92. Data and conclusions from these two test programs, in addition to prior WSSRAP testing, were utilized to calculate travel times for water through a 20 ft. layer of site soil. These travel time values were compared to travel time values calculated for a 30 ft. layer of material with a hydraulic conductivity of 1.0 E-07 cm/s (as described in 10 CSR 25-7).

TWO-STAGE BOREHOLE FIELD PERMEABILITY TESTS

I. Please find the following attachments relating to the TSB test effort.

Attachment 1 - Figure indicating the locations of TSB tests.

Attachments 2A and 2B - Spreadsheet calculation summaries which yield initial temperature corrected hydraulic conductivity values for stage 1 (K1CT) and stage 2 (K2CT).

Attachments 3A and 3B - Plots of time versus hydraulic conductivity for stage 1 and stage 2.

Attachment 4A and 4B - Calculations of the final time-weighted average hydraulic conductivity (K1' and K2').

Attachment 5 - Spreadsheet calculation summary of the derived Kv and Kh values.

Attachment 6 - TSB Method Reference, "The STEI Two-Stage Borehole Field Permeability Test", Boutwell, March 1992.

- II. Results of the TSB test program are summarized as follows:
- Table 1 provides a summary of TSB test results.

b:\mdnr.1

Page 2 TECHNICAL MEMORANDUM PRESENTING RESULTS OF RECENT LABORATORY AND FIELD PERMEABILITY TESTS.

- Table 2 provides a summary of basic statistics generated from the TSB results presented in Table
- Results of TSB testing indicate that *in situ* hydraulic conductivity is not affected by macropore features such as cracks or fractures.
- TSB no. 9 exhibited the highest permeability and also exhibited some erratic behavior early in the testing program, leading PMC staff to question the integrity of this test boring. This data is presented and is utilized in the attached data summaries. PMC staff have recently added dye to the permeameter (TSB-9) to investigate potential leakage when abandoning this hole using controlled excavation.

WATER/LEACHATE PERMEABILITY TESTING

I. Please find the following attachments relating to water/leachate permeability testing:

Attachment 7 - Figure indicating locations for undisturbed site soil samples which were subjected to permeability testing (ASTM Method D-5084).

Attachment 8 - Summary of leachate synthesis methodology.

- II. Results of the water/leachate permeability testing are summarized as follows:
- Table 3 summarizes the results to date of permeability tests run using water and leachate as a permeant.
- The effect of synthesized leachate on permeability values for these undisturbed soils was not detectable. Permeability values for two samples increased slightly, values for two samples decreased slightly, and values for two samples remained essentially the same when synthesized leachate was used as the permeant after tap water. These slight differences are within the range of accuracy obtained by test measurements.

CONCLUSIONS RESULTING FROM COMBINED DATA

I. Please find the following attachments relating to water/leachate permeability testing:

Attachment 9 - Presents calculations of travel time and permittivity which compare a 20 ft. thickness with hydraulic conductivity values from various WSSRAP sampling efforts (laboratory and field efforts) to a 30 ft. layer of soil with a hydraulic conductivity of 1.0 E⁻⁰⁷ cm/s (per 10 CSR 25-7).

Attachment 10 - Presents a list of pertinent reference documents associated with the data and conclusions in this technical memorandum.

Page 3 TECHNICAL MEMORANDUM PRESENTING RESULTS OF RECENT LABORATORY AND FIELD PERMEABILITY TESTS.

II. Conclusions resulting from review of combined data are summarized as follows:

Studies conducted to date have focuses on the hydrologic performance of site soils on a conservative basis. Geochemical performance studies focusing on leachate/mineral interaction are currently being negotiated with Pacific Northwest Laboratory (PNL). The hydrologic data presented herein are considered a "worst case" assessment of the material effects of leachate/mineral interaction.

- Field hydraulic conductivity testing by the Two-Stage Borehole method indicates that macropore
 features such as cracks and fractures do not result in larger hydraulic conductivity values than have
 previously been determined for the Ferrelview Formation and clay till soil units in the Disposal
 Facility Study Area.
- Laboratory triaxial permeability tests have shown synthesized leachate to have an undetectable effect on hydraulic conductivity of Ferrelview Formation and clay till soil unit samples.
- Travel time and permittivity calculations are used to demonstrate that the soil units comprising the foundation of the proposed disposal facility will provide a level of protection superior to the minimum criteria specified under 10 CSR 25-7.
- The data and calculations presented herein for the Ferrelview Formation and clay till soil units satisfy the criteria set forth under 10 CSR 25-7.264 (2)(N)1.A.(III) which addressed minimum soil performance requirements relative to the movement of hazardous constituents.

This information substantiates the suitability of the WSSRAP site for location of a disposal facility. A formal report regarding this data is forthcoming, pending completion of all associated testing. If you have any questions or comments, please contact K. Warbritton (ext. 3309) or J. Carman (ext. 3506).

```
cc (w/attach.):

S. Grozescu

D. Conover (MKE-BHO)
```

R. Rager (MKE-BHO) K. Lee (MKE-SFO) G. Nibler (MKE-BHO) J. Bognar

D. Daniel (UT)

RC-22-26-3A

cc (w/o attach.):

K. Meyer J. Meier J. Williams P. Cate

K. Greenwell

TABLE 1
SUMMARY OF HYDRAULIC CONDUCTIVITY
VALUES FROM
TWO-STAGE BOREHOLE TESTING

TSB NO.	Formation	K1'	K2'	Kv	Kh
TSB-01	FF	3.03 E ⁻⁰⁹	2.80 E ⁻⁰⁹	4.09 E ⁻⁰⁹	2.25 E ⁻⁰⁹
TSB-02	СТ	3.04 E ⁻⁰⁹	2.58 E ⁻⁰⁸	9.11 E ⁻¹⁰	1.01 E-08
TSB-03	FF	2.23 E ⁻⁰⁹	3.19 E ⁻⁰⁹	1.08 E ⁻⁰⁹	4.58 E ⁻⁰⁹
TSB-04	СТ	3.05 E ⁻⁰⁹	5.56 E ⁻⁰⁹	9.14 E ⁻¹⁰	1.02 E ⁻⁰⁸
TSB-05	CT	5.07 E ⁻⁰⁹	1.69 E ⁻⁰⁹	1.52 E ⁻⁰⁹	1.69 E ⁻⁰⁸
TSB-06	СТ	4.12 E ⁻⁰⁹	1.21 E ⁻⁰⁸	1.24 E ⁻⁰⁹	1.37 E ⁻⁰⁸
TSB-07	FF	2.40 E ⁻⁰⁹	1.48 E ⁻⁰⁹	2.09 E ⁻⁰⁹	2.75 E ⁻⁰⁹
TSB-08	CT	4.00 E ⁻⁰⁹	4.33 E ⁻⁰⁸	1.20 E ⁻⁰⁹	1.33 E ⁻⁰⁸
TSB-09	FF	9.59 E ⁻⁰⁹	1.67 E ⁻⁰⁷	8.36 E ⁻⁰⁹	1.10 E ⁻⁰⁸
TSB-10	FF	6.06 E ⁻⁰⁹	5.01 E ⁻⁰⁸	8.18 E ⁻⁰⁹	4.49 E ⁻⁰⁹
TSB-11	СТ	1.83 E ⁻⁰⁹	1.34 E ⁻⁰⁸	5.49 E ⁻¹⁰	6.10 E ⁻⁰⁹
TSB-12	FF	1.85 E ⁻⁰⁹	2.42 E ⁻⁰⁸	2.50 E ⁻⁰⁹	1.37 E ⁻⁰⁹
TSB-12	CT	2.59 E ⁻⁰⁹	5.22 E ⁻⁰⁸	7.76 E ⁻¹⁰	8.64 E ⁻⁰⁹

All hydraulic conductivity values are presented in units of cm/s.

K1' = Arithmetic time-weighted average stage 1 hydraulic
conductivity.

K2' = Arithmetic time-weighted average stage 2 hydraulic conductivity.

Kv = Final calculated vertical component of hydraulic conductivity.

Kh = Final calculated horizontal component of hydraulic conductivity.

FF = Ferrelview Formation

CT = Clay Till unit

TABLE 2

TWO STAGE BOREHOLE TESTING STATISTICS

	K1′	K2′	Kv	Kh
Maximum K 'Value (FF)	9.59 E ⁻⁰⁹	1.67 E ⁻⁰⁹	8.36 E ⁻⁰⁹	1.10 E ⁻⁰⁸
Minimum K Value (FF)	1.85 E ⁻⁰⁹	1.48 E ⁻⁰⁹	1.08 E ⁻⁰⁹	1.37 E ⁻⁰⁹
Logarithmic Mean (FF)	3.47 E ⁻⁰⁹	1.18 E ⁻⁰⁶	3.41 E ⁻⁰⁹	3.52 E ⁻⁰⁹
Maximum K Value (CT)	5.07 E ⁻⁰⁹	5.22 E ⁻⁰⁸	1.20 E ⁻⁰⁹	1.69 E ⁻⁰⁸
Minimum K Value (CT)	1.83 E ⁻⁰⁹	1.69 E ⁻⁰⁹	5.49 E ⁻¹⁰	6.10 E ⁻⁰⁹
Logarithmic Mean (CT)	3.23 E ⁻⁰⁹	1.37 E ⁻⁰⁸	9.69 E ⁻¹⁰	1.08 E ⁻⁰⁸
Maximum K (Both Units)	9.59 E ⁻⁰⁹	1.67 E ⁻⁰⁷	8.36 E ⁻⁰⁹	1.69 E ⁻⁰⁸
Minimum K (Both Units)	1.83 E ⁻⁰⁹	1.48 E ⁻⁰⁹	5.49 E ⁻¹⁰	1.37 E ⁻⁰⁹
Logarithmic Mean (Both Units)	3.34 E ⁻⁰⁹	1.28 E ⁻⁰³	1.73 E ⁻⁰⁹	6.43 E ⁻⁰⁹

All hydraulic conductivity values are presented in units of cm/s.

K1' = Arithmetic time-weighted average stage 1 hydraulic conductivity.

K2' = Arithmetic time-weighted average stage 2 hydraulic conductivity.

 $K_{\mathbf{V}} = \text{Final calculated vertical component of hydraulic conductivity.}$

Kh = Final calculated horizontal component of hydraulic conductivity.

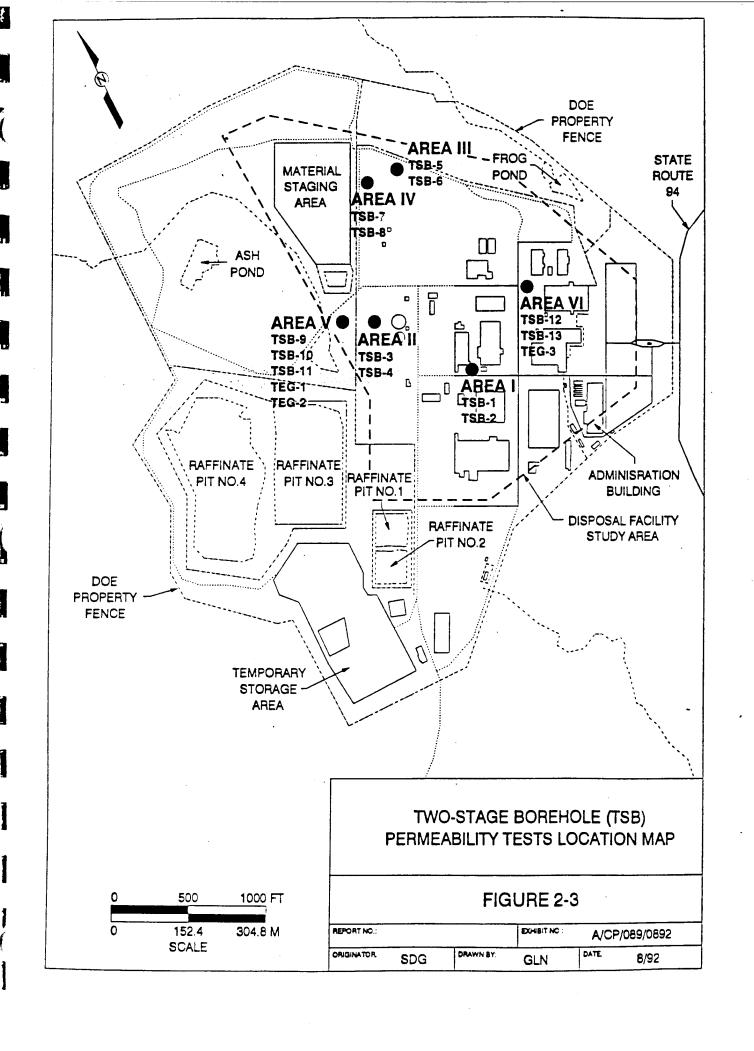
FF = Ferrelview Formation

CT = Clay Till unit

SUMMARY OF WATER/LEACHATE HYDRAULIC CONDUCTIVITY DATA

TABLE 3

	Formation	Plasticity Index	Water K	Leachate K
GT80-ST12	CT	33	1.74 E ⁻⁰⁹	1.22 E ⁻⁰⁹
GT83-ST06	FF	44	1.25 E ⁻⁰⁹	1.2 E ⁻⁰⁹
GT83-ST12	CT .	35	1.0 E ⁻⁰⁹	1.2 E ⁻⁰⁹
GT82-ST05	FF	60	5.0 E ⁻¹⁰	6.5 E ⁻¹⁰
GT82-ST08	CT	38	1.5 E-08	2.68 E ⁻⁰⁹
GT84-ST07	FF	61	1.3 E ⁻⁰⁹	1.3 E ⁻⁰⁹


Overall natural log mean hydraulic conductivity value for water is 1.66 E^{09} cm/s. Overall natural log mean hydraulic conductivity value for leachate is 1.26 E^{-09} cm/s.

Sample ID	Formation	Days Water	Days Leachate	Water Pore Vol.	Leachate Pore Vol.	Total Pore Vol.
GT80-ST12	CT	5	38	0.18	0.70	0.88
GT83-ST06	FF	4	40	0.43	2.59	3.02
GT83-ST12	СТ	7	23	0.53	1.79	2.32
GT82-ST05	FF	7	23	0.19	0.77	0.96
GT82-ST08	CT	8	16	3.53	3.91	7.44
GT84-ST07	FF	8	18	0.92	1.35	2.27

CT = Clay Till Soil Formation
FF = Ferrelview Clay Formation

Note: Values presented are current as of Nov. 16, 1992. Values for plasticity index are included for information. No correlations are proposed at this stage, relating PI to hydraulic conductivity. Hydraulic conductivity (K) values are shown in units of cm/s. Permeability testing with leachate will continue until all samples exceed 1.0 pore volume of leachate. Total pore volumes are estimated from calculations for total porosity for each sample.

ATTACHMENT 1 LOCATIONS OF TSB TESTS

TSB SPREADSHEET CALCULATION SUMMARY STAGE 1 (K1')

TWO-STACE KOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-1 Geometric factor—G=0.04030 Depth factor=239.12" TC values from TBG-2

s, mmente		START							Refil			ŧ														5						
1	-	1	t.	417	108%	119%	8%	12%	0%	70	8 1	24 0	۲0 ا	87 2	27	X .	127	۲,	S (X	77	ж К 1	K 1	* t	۲,	K 1	X 2	K !	ĸ:	¥ ;	* 1 9	7.0
	(CMB)		4.88E-09	3.081-09	1.031-08	4.041-08	3.72E-08	329E-08	3261-08	3581-06	3.478-08	3311-06	3311-08	3.111-06	3.051-08	2.96E-06	2.631-06	2.44E-08	2241-08	2.138-08	1.991-06	1.948-08	1.80E-08	1.738-08	1.628-06	1.488-08	1.486-08	1.528-08	1.508-08	1.448-08	1.3615-08	1.2812-08
cumulative	volume (cc)	0	1.03	671	4.82	81.84	88.88	87.85	67.85	114.62	119.83	123.84	123.84	151.15	16738	169.98	171.83	176.43	185.28	186.48	19853	199.75	207.36	210.18	214.59	220.41	220.41	251.73	256.94	27139	278.62	284.24
8	KICI	ı	4.88E-09	1.315-09	2.121-08	6.191-08	1.768-08	524E-09	6.25E-09	80-3117	2.00E-0B	1.432-08	1.43E-08	2.44E-08	2.02E-08	1188-08	1.052-08	5.72E-09	B-90E-09	4.81E-09	9.40E-09	4.92E-09	8.15E-09	4.83E-09	4.22E-09	3.58109	3.591-09	1.88E-08	1.03E-08	8.40E-09	4.40E-09	3.49E-09
•	viec factor	,	1.1	: =	! =	1	! "	1 7	11	11	1.1	1.1	1.1	1.1	11	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	11	1.1	1.1	1.1	1:1	1.1	T :	1.1	1 .1
;	S I	•	4.25.8-09	1 107-00	1031-08	4721-08	1 ROT-08	4 771-09	4.771-09	3.771-08	1.821-08	1301-08	1301-08	2.22E-08	1.64.6-08	1.071-08	9.53E-09	520E-09	8.09E-09	4.37E-09	8.54E-09	4.47E-09	5.5912-09	4.39E-09	3.84E-09	3.268-09	3.26E-09	1.71 E-08	9.34E-09	7.64E-09	4.00E-09	3.17E-09
	គ	,	5	1 6	8 6	3 5	9	900	000	-0.12	010	90.0	0.00	90.0	9.19	0.12	6.12	-031	90.0	0.38	-0.50	0.12	-0.12	-0.07	0.00	90.0	0.00	00.0	90.0	-0.25	90.0	0.00
	코	1	00 318 9	00 2000	1.1 ac 0	1758-08	1.03.5	107001	4 101-09	3.B0E-08	2.08108	1.24E-08	1.24E-08	2.23E-08	2.04E-08	9.35E-09	9.B6E-09	6.84E-09	7.92E-09	2.18E-09	9.87E-09	3.40E-09	6.89E-09	4.77E-09	3.84 E-09	3.378-09	3.37E-09	1.71E-08	9.70E-09	8.098-09	4.118-09	3.17E-09
	Ħ			26.40	26.00	31.70	200	0021	35.31	20.75	19.13	17.88	33.76	25.25	23.31	22.50	18.81	17.38	14.83	14.25	10.50	10.12	7.75	6.88	5.50	3.69	33.00	23.25	21.63	17.13	14.80	13.13
cumulative	hours		000	26.0	3.67	8,08	22.00	20.50	20.77	45.83	49.23	53.80	63.65	69.52	73.57	77.27	93.40	102.77	118.00	125.68	142.60	147.82	165.78	174.07	190.47	216.15	215.17	239.05	24620	270.28	294.28	318.70
clapsed time	seconds		1	0969	6240	6700	57460	09061	310	5.40 5.7840	12240	15720	081	67120	14580	13320	58080	33720	54840	27680	80900	18080	65400	29820	59040	88860	6	A5980	25740	86700	86400	87900
	Time	;	6101	1215	1369	1624	822	1600	1601	2091	# C - 1	1555	1558	750	1153	1535	672	1705	819	1800	87.5	1356	808	1623	847	928	020	120	1830	1635	1635	1700
	Date	•	10/08	10/00	0/00	00/01	10/10	10/10	10/10	01/01	11/01	17/01	11/01	10/13	10/15	10/15	10/16	21/01	71/01	17/01	10/11	10/15	10/18	10/18	10/17	10/18	01/01	01/01	01/01	10/20	10/01	10/22

THO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

Geometric factor-G=0.04030 Depth factor=239.12" TV values from TEC-2 1516-1

	•	Comments					;	+1 Hr Davliebl		Seeing Time	
				74	\$	*	\$	7	2	24	S ,
									n anti		
a la	nmanax	androme (m)	A STATE OF	07 000	01.402	01 106	41.142	900 KA	2000	2002	2000
•	5										1005-08
		the feedom	VIBC. IBCOL	•	.	•	-	•	7	:	TT
		5	צו	4	3.07109		3.05 11-09		1.576-09	00 827	1.471
		ì	2	•	000		000		F P	•	9
			=		3071-09		3055-09		2221-09		2.54.6-09
			Z	!	11 50		700	•	8.69		7.50
cumulative	should time		1		66 676	1	28K 2K	2000	300 82		411.87
	shared time	crabaca rame	aproximate a		BEAT	00000	09760	00000	01320		76500
			E.	TITLE	4697	1001	6631	1022	IRR	2001	1310
			2	2197	60/01	10/63	19/01	10/64	10/05	10/60	10/28

END OF TEST TSB-1

THO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

	Comments	!	START																													Refil		
	1870 (K1 ms)			١.	20%	21%	19%	×	0	82	8%	K i	5 2	24	8%	%	¥ ;	8	Ķ	۲ 0	24	1 2	27	0%	20	20	7 0	2%	1%	2%	2%	0%	20	:
	K (t m)	e*	ا ،	1.941-08	1.45E-08	1148-08	8.01E-09	6.721-09	6.711-09	6.311-09	697E-09	6.431-09	6.30E-09	6.05 E-09	4.75E-09	4.88E-09	4.49E-09	4.38E-09	60-190'T	4.08E-09	3.868-09	3.791-09	3.718-09	3.71E-09	3.718-09	3.691-09	3.681-09	3.611-09	3.58E-09	3.51.8-09	3.43E-09	3.431-09	3 42 E-09	27.0
cumulative	volume (cc)		0.00	121	5.81	7.42	1825	17.44	17.44	87.85	69.28	76.56	78.71	123.84	130.04	131.87	131.90	138.49	14051	146.52	145.72	152.75	153.14	160.17	163.39	169.01	177.78	184.65	186.68	193.90	16661	19991	207.04	FE: 102
ਝ	KLCT		1	1.945-08	9.10E-09	8.58E-09	5.22E-09	3.888-09	3.B&E-09	1.80E-09	3.B4E-09	4.43.6-09	3.55E-09	223E-09	3.751-09	3.01E-09	1.128-09	3.84 E-09	1.101-09	4.09E-09	5.45E-10	3.25E-09	1.558-09	3.72E-09	3.68E-09	3.525-09	3.578-09	2.99E-09	2.66E-09	2.78E-09	2.558-09	25.5-00	00 3000	3.465-03
	visc factor		ı	1.1	1.1	11	1.1	1.1	11	1.1	11	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	-	-	: :		1.1
	KIC		1	1.76E-08	827E-09	5.98E-09	4.74E-09	3511-09	3511-09	1.632-09	3.491-09	4.03E-09	3221-09	2.035-09	3.411-09	2.74E-09	1.02E-09	3.49E-09	9.99E-10	3.72E-09	4.96E-10	2.95E-09	1.416-09	3.381-09	3.34E-09	3.20E-09	3.256-09	2.72E-09	2.428-09	2 K 3 E-00	2002	2325	5756-09	2.93E-09
	Ħ		ı	-0.12	00.0	00.0	-0.12	0.19	00.0	670	90.0	-0.12	970	90.0	90.0	-0.19	0.12	-0.12	-0.31	90.0	0.38	-0.50	0.12	-0.12	-0.07	00.0	90.0	000	900	20.0		9 6	0.00	0.00
	ĸ		ı	1.94E-08	R 275-09	5.98E-09	4.961-09	7.225-09	7221-09	4.22E-09	3.07E-09	424E-09	4.84E-09	1.63E-09	3.521-09	4.11E-09	7.B2E-11	3.701-09	1.97E-09	3.61E-09	9.53E-10	3.831-09	7.03E-10	3585-09	3.801-09	3.20109	3.32E-09	2.72E-09	2678-09	20 21 20 6	80-3007	60-365.5	2396-09	2.93E-09
	료		33.12	31.81	12.12	30.81	28.08	27.80	32.76	32.44	32.00	29.63	29.08	28.81	28.88	26.31	26.30	24.25	23.62	21.75	22.00	19.81	10.69	17.50	16.50	1.4.75	12.02	9.88	0.05	3 6	8 5	5.13	34.81	32.31
cumulative	ponu		000	0 -	2 6	70.8	22.05	23 K3	23.58	25.88	29.78	45.83	4923	53.85	69.52	73.55	77.27	03.40	102.77	11798	125.70	142.57	147.82	185.78	174.07	100 43	21617	039.00	21816	0.000	270.28	294.25	294.33	318.68
. Simon	seconds		ı	0808		0540	57540	2762	180	7580	1,780	57780	12240	15000	K7120	14520	13380	58080	33720	54780	27780	80720	02:00	85400	20820	0000	07008	04040	0000	00907	86820	86280	300	87660
	Time		666	0701	1,00	001	1054		202	000	1807		1134	1011	#00T	1 2	15.18	277	1704	9 4	410	2001		1001	1691	101	9 60	026	028	1630	1637	1635	1640	1701
	Dete		000	80/01	80/01	60/01	80/01	01/01	01/01	01/01	01/01	10/10	11/01	11/01	11/01	21/01	21/01	21/01	61/01	C1/01	10/14	*1/0T	01/01	01/01	10/10	21/01	21/01	91/01	61/01	61/01	10/50	10/21	10/21	10/22

THO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

ISD-2 Geometric factor-G=0.04030 Depth factor=358.75" TC values from TEG-2

	Comments		-		
	RPD (KLvns)	0	20	2,4	8
	K (Lm)	•••			
unublive	volume (xc)	215.75	223.78	231.01	238.04
δ					3.51E-09
	viec. factor	11	T.1	1.1	1.1
	KIC	2.95E-09	3.151-09	2.151-09	3101-09
	ង	ı	ı	637	0.12
	¤	2.95 K-09	3.151-09	2588-09	3.03E-09
	æ	20 AB	27.3A	25.13	22.94
cumulative	elapeed ume	142.11	185.25	300.63	411.80
	elapsed time	95140	00160	0020	76200
	į	200	1040	1033	1308
	į	2007	59/01	10/01	10/28

END OF TEST TSB-2

TRO-STACE BORGHOLE FIBID PERMEABILITY TEST STACE ONE DATA

	Comment	START																												At U. Dadioht	Crime Time	Saving Parks
	RPD (KLYNA)	•	1	92%	<u>.</u>		# 1 10	¥ ;	X.	8	X	¥.	X	27	8	82	24	K	1%	XI	¥	0	¥	¥	7	Y,	Z)	3%	71		(b	43
	X ((m)	ı	3.501-09	00-3770	083100	200	B.92E-09	6.391-09	8.12E-09	7.82E-09	7.40E-09	7.361-09	7.051-09	6.86E-09	626K-09	5.94E-09	5.80E-09	5.85E-09	5.618-09	5.55E-09	5.50E-09	5.48E-09	6.418-09	6.19E-09	5.00E-09	4.B0E-09	4.60E-09	4.45E-09	4 408-00	2000	50-97T*	4.03E-09
cumulative	volume (cc)	000	0.19		200	20.11	11.82	18.86	20.08	2027	26.47	26.26	26.89	31.10	31.10	34.73	32.70	37.94	37.76	42.37	44.17	47.98	53.58	69.43	63.64	86.05	68.46	71.06	74.08	00.5	76.57	80:03
	KIC	•	3.5016-09	00-3780		A0-100'A	5.88E-09	7.57109	4.81E-09	2.858-09	6.70E-09	6.70E-09	127E-09	814E-09	4.36E-10	3.781-09	3.77E-09	4.54E-09	4.52E-09	5.135-09	4.58E-09	521E-09	4.B7E-09	3.761-09	3.08 E-09	2.588-09	2.18E-09	60-3E7 6		3.691-08	B.B0E-10	1.748-09
	viac factor	1	-	: :	7 :	1.1	1.1	11	1.1	7	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	-	: =	::	7.7	-:	1.1
	KIC	,	2 1 RE-00	2010	80-3180	80-39F.0	5.34E-09	6.865-09	4.378-09	2.411-09	6.0915-09	6.0916-09	1168-09	5.58E-09	3.97E-10	3.438-09	3.43E-09	4.13E-09	4.118-09	4.68E-09	4.16E-09	4.74E-09	4.42E-09	3.42E-09	2.80E-09	2.348-09	1 981-09	00-316-6	60-917-7	3.36 E-09	B.00E-10	1.58.8-09
	ដ	1		3 :	270	97.0	0.12	-0.26	910	0.12	0.00	-0.32	61.0	-0.12	90.0	-026	0.43	-050	0.08	90.0	000	0.08	00.0	-0.13	-0.25	61.0			0.0	0.00	-0.31	-0.44
	ᄗ	ſ	00 301 6	301.0	9.428-09	1.18E-08	3.81E-09	7.B0E-09	7.70109	8.03E-10	6.09E-09	3.64E-09	3.84E-09	6.031-09	8.03E-09	4.41E-09	4.41E-09	5.97E-09	5.94E-09	4.88.	4.18E-09	4.518-09	4.42E-09	3.685-09	3.4615-09	2 00E-09	100.2	60 arc c	2.21E-03	3.36E-09	1.608-09	2.835-09
	룑		. 10.25	36.10	30.13	29.38	29.13	27.00	28.58	28.50	24.88	24.83	24.75	23.13	23.13	22.00	22.63	21.00	21.08	19.62	19.08	17.8B	18.13	1671	13.00	19.95	1 1 1 1	00.00	ROOT	9.50	8.88	7.08
cumulative elapsed time	hour	6	0.0	1.08	17.17	20.87	24.92	40.98	2677	18.80	84.63	88.76	72.38	88.53	07.87	113.18	120.90	137.52	142.78	180 03	16923	185.45	21015	24133	286.42	280.42	2000	20.516	337.45	360.47	385.75	408.92
elanged time	seconds	•	-	3800	67900	13320	14580	57840	19180	15980	67000	14820	13080	58140	SARA	20000	27780	50820	02081	00801	20880	00043	00000	112280	04700	00100	00000	0,000	82080	62860	91020	83400
	Time	1	1010	1620	826	1207	1810	814	1137	1803	75.9	3 5	15.00 15.38	717	1 1 1	0001	1400	ROOT W	970	7041	110	8201	240	#28.	0001	0491	191	1704	1642	1543	1600	1510
	Dete		60/01	10/08	10/10	10/10	10/10	10/11	11/01	11/01	10/11	21/01	21/01	10/13	61/01	21/01	*1/01 *0/14	\$1/01	01/01	01/01	91/01	91/01	21/01	10/10	A1/01	02/01	12/01	10/22	10/23	10/54	10/25	10/26

TRO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

Comments	START															15.61														+1 Hr Daylight	Savings Time	
RPD (KL vm.)	,	•	#67	¥25	13%	12%	20	3%	8%	7,2	3.6			Y 0	700	5	ָלָאָ מאַ	7	×	22	3%	3%	×	**	27	2.	2	2 2	22	7,	3%	· •.
K (tm)	•	A 02E-00		P.285-09	4.81E-09	4.08E-09	3.741-09	3.545-09	3.435-09	3211-00	092016		2 D 2 E O 0	80-129'Z	6.47E-09	6.366-09	6.368-09	6.82E-09	6.568-09	6.46E-09	6.258-09	A 0.88.00	601E-09	5.78E-09	K K7E-00	00 406 4	90 110	525E-09	6.148-09	4.96E-09	4.B2E-09	
cumulative volume (cc)	000			6.51											119.02											170.43	_	_	188.68	_		
KICT	1	00.75.00	B.U.S.EUB	5.08 E-09	1.598-09	1.345-09	3215-09	00-317-0	1348-09	00 3636	80-32C2	1.455-09	1 BBE-08	1.86E-09	2.44E-08	3.421-09	3.421-09	8.75E-09	5.84E-09	5.285-09	4 R7E-09		2776	3.4 to	3.422-08	3.22.5-09	3326-09	3.42E-09	3.56.8-09	2.416-09	97116	
visc. Inclor	1		1:1	11	1.1	1.1	=	Ţ -	: -	1 :	: :	T. 1	11	1.1	1.1	1.1	1.1	11	1.1	-	! =	1 :	::	: :	1.1	7	=	1:1		: -	•	:
KIC	ı		7.2912-09	4.82E-09	1.45E-09	1221-09	2018-00	80-318-2	177 TO 1 177	1221	2291-09	1321-09	1.711-09	1.70E-09	2.21 E-08	3.111.09	3.11E-09	7.96E-09	5.31E-09	A AOF-DO	00 8307	4.20E-08	4.19E-09	3.405-09	3.116-09	2.931-09	3.02E-09	3.118-09	1 21 5.00	00-1016	20.40.0	80-38 T-2
Ħ		. ;	0.00	-0.12	9	800	3	7 6	A 50	90:0	900	979	0.00	-0.25	-0.12	0.12	0.00	-0.12	5	3 6	3 3	20.0	0.00	90.0	979	90.0	0.00	000	2	3 6		7
. 🗓		1	7.29E-09	4.93E-09	2 K7E-00	0.000	01-880.0	3225-09	4.54E-09	8 P8 E-10	2.451-09	326E-09	1.71E-09	2.13E-09	224E-08	2.10E-09	2101-09	8.24E-09	S S S S S S S S S S S S S S S S S S S	80-2007 80-2007	80-20G.	4.358-09	4.196-09	3.78E-09	3.568-09	3.04E-09	3.02E-09	3.118-09	00 476	3.24 6-09	60-241.7	3.162-09
룑		34.26	34.08	32.13		1010	31.10	30.50	30.13	30.08	29.13	28.81	28.00	28.75	14.13	13.88	34.76	31.25	2 6	31.00	22.02	25.89	2331	22.89	20.69	19.00	1731	15.83		13.94	16.30	10.75
cumulative elapsed time hours		0.00	1.07	17.17	400	2002	24.93	40.98	4437	48.80	64,63	68.73	88.53	113.16	137.48	142.75	142.77	18023		20881	184.75	209.48	233.80	240.83	264.77	288.80	313.15	13 R R D	9000	359.B2	365.10	408.13
elapsed time seconds		0	3840	5.70A0		13320	14840	67780	12180	15960	67000	14780	71280	88820	87800	CRORI		0000	00000	29820	28440	88040	66820	25320	66680	88520	R7860	00018	0000	82800	91020	82920
Tine		1518	1620	826	030	1208	1612	816	1138	1604	764	1200	748	R 25	34.5		1011	2110	019	1627	841	928	932	1634	1842	1844	1705	2011	C101	1545	1602	1504
Date		10/08	10/00	20/01	01/01	10/10	10/10	10/11	10/11	10/11	10/12	10/12	61/01	77/01	10/15	01/01	01/01	91/01	10/18	10/18	10/11	10/18	10/19	10/18	10/20	10/01	66/61	22/01	10/23	10/54	10/25	10/26

END OF TEST TSD-4

TWO-STACE BORGHOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSD-5 Geometric factor-G=0.04534 Depth factor=153.5" TC values from TBC-1

																														Ħ			ξī	
Comments		START																										Reli		+1 Hr Daylight	Savings Time		END OF TEST TS	
(1 u) uaa		1		22	87%	26	ξ <u>2</u> .	<u>.</u>	104	7 7 3 4 4	4 h	K 8	? ?	۲ <u>۱</u>	K .	5 8	K ?	X ;	K ;	4 1	K 1	77	22	K i	¥ ;	¥	37	0%	29	3%	22	20	20	
1	/Eury) v	1	3.861.09	3.851-09	0.281-09	00 1610	20 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E 2 E	9000	40-304.9	80-129'6	V.45E-0V	60-160-6	A0-1997 A	80-354.8	6.778-09	6.77%-09	8.57E-09	8.50E-09	6.386-09	8.32E-09	6.09E-09	7.96E-09	7.83E-09	7.521-09	7.23E-09	8.97E-09	6.79E-09	6.79E-09	8.44E-09	6.27E-09	8.14E-09	6.12E-09	6.10E-09	! !
cumulative	volume (cc)	0.00	1.19	171	77.03		1221	12.00	21.07	23.20	23.88	31.03	3434	100	39.35	1858	47.38	63.39	55.41	60.04	66.24	72.28	73.69	78.70	82.11	85.74	89.78	89.76			108.62	112.05	113.05	
Ę	7	,	3 RRE-00	3 478-00	20 2 C 2 C 2	00-2071	6738-08	4.D6E-09	126E-08	6.965-09	8.58E-09	1188-08	7.101-09	80-3619	6.158-10	8.79E-09	4.32E-09	B.05 E-09	6.22E-09	7.B2E-09	6.51E-09	6.96E-09	3.751-09	4.63E-09	4.25.6-09	4.00E-09	4.59E-09	4.598-09	8 10E-09	3.891-09	4.048-09	5 20 20 2 A	2 00E-00	£.40 E.3
•	viec. factor	,	:	!]	1 :	1 :	:	1	T.1	11	T	T	1.1	1.1	1.1	1.1	1.1	1.1	- 1	=	11	1.1	1.1	1.1	1.1	1.1	1.1	=	: =	: -	: -	: -	: -	T: T
;	KIC	ı	9 61 5 00	3115	an-agre	1.09 5-05	7.39E-09	474E-09	1758-08	6331-09	5.98E-09	1.078-08	6.54E-09	7.44E-09	5.59E-10	7.991-09	3.935-09	7.321-09	5.8612-09	7.11E-09	5.92E-09	8.33E-09	3.41 E-09	4.21E-09	3.86.8-09	3.63E-09	4.175-09	4 175-00	7 36 5 00	60-3071	2012400	3.715-09	0.0212-09	2.721-09
	ክ	i		9 5	210	979	6T0	0.12	0.00	-0.32	0.19	-0.12	90.0	-0.25	0.43	920	90.0	90.0	0.00	90.0	00.0	0.19	613	-0.25	0.13	000	000		3 6	3 5	7	7 .0	0.06	-0.19
	豆			80-369	1.161-09	1202-08	1.121-08	2151-09	1.151-08	1168-08	2311-09	1121-08	6.05E-09	8.58E-09	-3.4E-09	1.03E-08	3.175-09	7.56E-09	5.86E-09	6.83E-09	5.92E-09	5.74E-09	4.84.8-09	5.018-09	3.4415-09	3.63.1.09	4 175-09	00 3417	#.1 (E-03)	80-1957	4.38109	4.96 K-09	4.75E-09	7.02E-09
	롰		33.00	33.13	33.06	30.25	29.89	29.58	28.94	28.25	26.13	23.58	22.B1	20.88	21.25	19.00	18.75	18.88	18.25	14.81	12.88	00.11	10.58	00.6	7.94	8	A A	000	34.00	31.50	29.88	28.13	27.08	26.75
cumulative elapsed time	hour		00.0	3,85	7.72	23.87	27.10	31.26	47.08	2113	54.80	70.07	79.80	98.00	103.75	119.62	125.38	143.67	151.82	187.53	192.07	218 98	223.05	247.95	271.92	208.27	7087	OFFIC	343.06	366.55	391.B3	418.17	431.B3	13135
elapsed time	seconds		0	13140	14640	67420	12360	14940	67000	14700	13080	58200	31800	68320	27900	67120	20780	20100 87.180	29700	ARA BO	98330	90,00	00000	20000	86280	946	09979	82080	180	82680	91020	87600	26400	11100
	Time		853	1232	1638	833	1169	1808	758	1203	1541	761	1841	# E Y #	8.81		970	1410	770	3101	000	600	702	1650	0001	0101	1709	1647	1650	1548	1605	1625	805	1110
	Date		10/10	10/10	10/10	10/11	10/11	10/11	10/13	10/12	20/12	10/12	21/01		*1/01	10/14	10/10	10/10	10/18	07/01	11/01	10/16	81/01 5	61/01	02/01	10/51	10/25	10/23	10/23	10/54	10/25	10/28	10/27	10/27

TRO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

4

TSD-6 Geometric factor-C=0.04534 Depth factor=231.5" TC values from TEC-2

	•																													light	2
		START																				1	22							+1 Hr Daylight	Savings Time
() () () () () () () () () ()	No. 1) (N. wis)	·		43 X	29%	202	10%	11%	11%	K :	¥ !	×,	10%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7,7	K (X ;	71	7	17	¥ ;	24	20	1 1	37	3%	8 8	24	2%	3%	22
1	K (I'B)	1	5.41 E-08	3.49K-08	2.82E-08	157E-08	1.428-08	1271-08	1141-08	1.061-08	1.01 1.08	00769	8.74E-09	8.53109	7.921-09	7.71 E-09	7.521-09	7.461-09	7.35E-09	7.301-09	7.04E-09	6.89K-09	6.89E-09	6.858-09	6.631-09	6.41E-09	6.24E-09	6.121-09	6.01E-09	5.85E-09	5.738-09
cumulative	volume (cc)	000	1.99	7.42	12.01	22.87	5429	24.88	33.31	34.50	34.73	42.95	11.58	61.40	50.37	67.79	58.59	86.24	69.04	76.07	82.50	90.33	90.33	92.93	10038	106.58	113.01	119.43	125.47	131.90	136.93
;	KI CI	1	5.41E-08	3.0512-08	1941-08	1.091-08	3.878-09	3.115-09	8.78E-09	2.40E-09	2.B5E-09	8.28E-09	1.181-09	7.49E-09	431E-10	8.36E-09	3.615-09	7.01E-09	5.4BE-09	6.835-09	5.28E-09	5.70E-09	5.70E-09	5.69E-09	4.588-09	4.17E-09	4.37E-09	4.60E-09	4.47E-09	3.666-09	3.86E-09
	viec factor	1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	11	1.1	T	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1
	KIC		4.91E-08	2.77E-08	1.76E-08	80-316-6	3.52E-09	2.83E-09	798E-09	2.181-09	2.59E-09	7.518-09	1.07E-09	6.81,6-09	3.918-10	5.78E-09	3.281-09	6.385-09	4.988-09	8.21E-09	4.80E-09	6.185-09	5.18E-09	5.18E-09	4.16E-09	3.791-09	3.978-09	4.18E-09	4.07E-09	3,355-09	3.511-09
	뉟	1	000	0.10	90.0	-0.12	0.10	90.0	90.0	-018	0.12	-0.12	-0.31	90.0	0.38	920	0.12	-0.12	-0.07	0.00	-0.06	0.00	0.00	-0.06	-0.25	-0.06	00.0	00.0	00.0	-0.31	-0.50
	Ŋ	ı	4 01 E-08	3.135-08	1.891-08	1.031-08	6.20E-09	2.12E-09	8.17E-09	4.4BE-09	9.54E-10	7.BBE-09	2.83E-09	6.63E-09	6.63E-09	7.391-09	2.22E-09	8.72E-09	5.42E-09	6.21E-09	4.93E-09	5.18E-09	5.18E-09	5.59E-09	4.67E-09	3.91E-09	3.97E-09	4.18E-09	4.07E-09	3.975-09	4.55E-09
	젍	33.62	00 66	31.31	20 AB	28.50	26.08	25.88	23.25	22.88	22.81	20.26	19.75	17.82	17.94	15.83	15.38	13.00	12.13	10.25	7.94	6.50	31.44	30.83	28.31	26.38	24.38	22.38	20.50	18.50	1631
cumulative clapsed time	hour	9	0 6		7.26	23.15	26.62	30.77	46.60	60.88	64.32	70.48	79.33	95.52	103.27	119.13	124.88	143.05	151.33	167.05	19158	21850	21650	223.45	247,45	271.47	296.14	319.78	342.77	368.07	392.41
elapsed time	econde	ć	2	0300	0787	67240	12480	07671	67000	14700	13080	58200	31860	58280	27900	67120	20700	85400	29820	58580	66320	89700	0	25020	88400	88480	88824	85020	RZRRO	01000	87600
	Time	6	3 6	ACA !	1638	933	1200	1809	769	1204	1542	762	1643	ASA	1639	B 31	1418	82B	1627	8	858	953	953	1650	1650	1881	171	1848	0741	1607	1627
	Date	61, 61	01/01	01/01	01/01	01/01	10/11	10/11	10/12	10/12	10/12	10/13	10/13	71/01	10/11	10/15	10/15	10/18	10/16	27/21	10/1	01/01	01/01	01/01	10/20	10/51	10/21	22/01	S2/01	¥2/01	10/26

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-6 Geometric factor-G=0.04534 Depth factor=231.5" TV values from TBG-2

	Comments				
	PPD (721	•	17	20	}
		1	6.87E-09	K AKE-DO	
cumulative	andurane (m)	Andrew (cr.)	14353		
			4.23E-09	•	•
	tion feeters	VINC. INCLUS	1.1	•	7.7
	5	ב ב	3.85E-09	6	Z.75E-09
	E	2	-0.25	1	20.0
	3	Z	4 878-00		3.82E-09
	i	æ	14 88		14.83
cumulative	capaci miss	ponu	1000	400.05	41137
	cashed unic	econde	0000	02290	12060
		E.		\$ 04	1125
		ž	300	10/51	10/27

END OF TEST TSB-6

TWO-STACE KOREIKOLE FIBLD PERMEABILITY TEST STACE ONE DATA

ISB-7 Geometric factor-G=0.04534 Depth factor=161.25" IV values from TEG-1

	Comments	START																												+1 Hr Daylight	Sevings Time	
	RPD (KLwa)	t	•	75%	12%	XI	X 2	0	17	1%	8	6	12	2	K	8	K K	7 N	, M	K O	×	7 0	02	24	3%	27	3%	17	7	X)	2%	0
. • •	K (t m)		2.161-09	4.74E-09	60-1917	422E-09	432E-09	434E-09	4.30E-09	424E-09	4.23E-09	421E-09	417E-09	3.948-09	3.83E-09	3.62E-09	3511-09	3.4416-09	3.51.6-09	3.50E-09	3.538-09	3.5216-09	3.531-09	3.476-09	3358-00	3.29E-09	3.208-09	3.168-09	3.19E-09	3.078-09	3.00E-09	2.99E-09
cumulative	volume (cc)	0.00	0.61	624	6.01	6.42	10.44	11.05	11.44	1428	14.84	1484	16.05	18.47	21.49	2027	23.88	23.90	27.31	28.53	30.90	34.53	37.76	38.55	41.57	43.76	45.97	48.57	21.40	53.81	57.05	58.63
	אנט	ı	2.15E-09	527E-09	1111-09	4.42E-09	4.52E-09	4.52E-09	3.B6E-09	4.04E-09	4.04E-09	3.81 E-09	3.97E-09	1.57E-09	3.15E-09	4.75E-10	2.58E-09	1.70E-09	4.08E-09	3.42E-09	3.77E-09	3.48E-09	3.62E-09	131E-09	2.17E-09	2.58E-09	2.17E-09	2.53E-09	3.61E-09	1.358-09	1.79E-09	2.61E-09
	viec fector	ı	11	7	11	7	: :	1.1	1.1	1.1	1.1	: :	T I	T.		1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	: :	1.1	1.1	1.1	1.1	:	1.1
	KIC	ı	1.96E-09	4.79E-09	1.01E-09	4.02E-09	4.11E-09	4.11E-09	3.511-09	3.671-09	3.87E-09	3.47E-09	3.51E-09	1.435-09	2.88E-09	4.32E-10	2.35E-09	1.55E-09	3.718-09	3.115-09	3.431-09	3.151-09	3.29E-09	1.191-09	1.97E-09	2346-09	1.985-09	2.391-09	3.286-09	1.238-09	1.63E-09	2.55E-09
	5	ı	-0.08	6.13	91.0	0.12	-026	-0.19	0.12	0.00	-032	0.19	-0.12	90.0	-0.25	0.43	-020	90.0	-0.08	0.00	90.0	0.00	0.19	-0.13	-0.25	0.13	0.00	1	0.19	-0.31	-0.44	90.0
	코	,	3.3815-09	4.68E-09	3.581-09	1.851-09	4.54E-09	3.45E-09	1.55E-09	325E-09	2585-09	2.58E-09	3.631-09	8.85E-10	3.45E-09	3.45E-09	3.935-09	7.38E-10	3.4BE-09	2.75E-09	2.B0E-09	2.78E-09	2.44E-09	2.20E-09	2.38E-09	1.74E-09	1.75E-09	2.11E-09	2.305-09	1.85 E-09	2.586-09	2.01 E-09
	룑	33.50	33.31	31.87	31.83	3150	30.25	30.08	29.94	29.06	28.88	28.88	27.88	27.75	28.51	27.19	26.13	28.08	25.00	24.82	23.88	22.75	21.76	21.50	20.56	19.88	19.19	18.38	17.50	16.75	15.75	15.25
cumulative	hour		3.63	21.40	25.27	29.33	45.28	48.48	62.98	68.80	72.BB	78.52	92.70	101.55	117.83	125.38	141.37	147.02	165.18	173.47	189.32	213.80	238.63	245.55	269.70	293.70	318.02	341.72	364.67	369.93	41427	429.92
elanged fire	seconds	c	13080	63960	13929	14640	67420	11520	16200	56940	14700	13080	58280	31660	67900	27900	67540	20340	65400	29820	67060	88140	89400	24900	66940	86400	87540	85320	82620	90960	87800	56340
	Time	6113	1450	836	1228	1632	829	1141	1611	800	1205	1543	754	1845	850	1835	834	1413	823	1640	831	006	950	1645	1854	1654	1713	1655	1552	1608	1628	807
	Date	00/01	10/01	10/10	10/10	10/10	10/11	10/11	10/11	10/12	10/12	10/12	10/13	10/13	10/14	10/14	10/15	10/15	10/18	10/18	10/17	10/18	81/01	10/18	10/20	10/21	10/22	10/23	10/54	10/25	10/28	10/27

TWO-STAGE ROREHOLE FIELD PERMEABULIY TEST STAGE ONE DATA

TSB-7 Geometric factor-G=0.04534 Depth factor=151.25" TC values from TBC-1

-	1	A (tria)	2991-09
cumuhlive	(m)	Animire (at)	58.83
	5	I I	3.41E-09
	f	VISC. IBCOL	1.1
	5	מנ	3.101-09
	1	¥	90.0
		Z	0.00E+00
		롡	15.25
cumulative	cashed arms	hour	431.30
James Garage	capped mar	aproxime a	4980
		<u>1</u>	930
		2	10/27

Comments

1870 (KLvm.) 0%

END OF TEST TS9-7

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

Geometric factor—G=0.04534 Depth factor=237.0" TV values from TEG=2 12B-6

	Commenta	START																										+1 Hr Daylight	Savings Time	Refil		Reposit
	RPD (KLvn)	•		38%	12%	22%	3%	6 %	8%	አ አ	6 %	×	¥	12%	X	24	7 2	6	8	2%	1 1	12	34	¥ :	17	2%	14	22	1 4	0%	1	2 0.
, .	K (tm)	•	4.181-09	6.146-09	5.45E-09	8.77E-09	6.55E-09	6.26E-09	6911-09	5.51E-09	6248-09	5.03E-09	4.B3E-09	4.291-09	3,901-09	3.828-09	3.915-09	3.915-09	3,935-09	3.B6E-09	3.801-09	3.76E-09	3.6415-09	3.818-09	3.86E-09	3.92E-09	3.951-09	3.888-09	3.858-09	3.858-09	3.891-09	3.891-09
cumulative	volume (cc)	0.00	00.1	8.22	9.22	12.82	1924	20.27	20.66	24.88	25.67	25.47	29.88	33.92	37.14	37.33	42.78	1611	48.76	63.78	68.59	59.8 2	64.02	72.06	78.29	84.71	90.33	95.35	101.58	101.58	107.62	114.04
	KLCT	ı	4.18E-09	8.588-09	1.60E-09	1.508-08	8.15E-09	2.135-09	2.101-09	4.158-09	7.74E-10	8.71E-10	3.89109	2281-09	1.98E-09	1.895-09	4.64E-09	3.98E-09	4.07E-09	3.338-09	3.31 E-09	2.53E-09	2.42E-09	5.656-09	4.47E-09	4.77E-09	4.36E-09	2.B2E-09	3.42E-09	3.41E-09	5.03E-09	5.038-09
	viac factor	1	1.1	1.1	1.1	7	1.1	11	11	1.1	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	11	1.1	==	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	-
	KIC	ı	3.B0E-09	5.96E-09	1.468-09	1371-08	5.59E-09	1.938-09	1.912-09	3.7816-09	7.04E-10	7.92E-10	3.53E-09	2.07E-09	1.80E-09	1.54E-09	4.22E-09	3.62E-09	3.70E-09	3.03E-09	3.01E-09	2,301-09	2.20E-09	5.13E-09	4.06E-09	4.33E-09	3.96E-09	2.57E-09	3.10E-09	3.105-09	4.57E-09	4.57E-09
	ដ	•	00.0	00.0	910	90.0	-0.12	-018	90.0	90.0	67.0-	0.12	-0.12	-0.25	-0.12	0.12	-015	-0.07	0.00	-0.08	0.00	-0.06	-0.25	-0.06	00.0	1	ı	-0.31	-0.50	0.00	-0.25	-0.25
	껖	ı	3.80.5-09	6.96.E-09	3.77E-09	1302-08	5.958-09	60-291.7	127E-09	3.96E-09	2931-09	-7.9E-10	3.891-09	2.56E-09	2.0512-09	5.13R-10	4.548-09	4.03E-09	3.708-09	3.158-09	3.01E-09	2.738-09	2.72E-09	5.26E-09	4.06E-09	4.33E-09	3.96E-09	3.20E-09	4.19E-09	4.19E-09	5.09E-09	5.89E-09
	룑	33.62	33.31	31.08	30.75	29.83	27.83	27.31	8172	25.88	25.83	26.89	24.38	23.08	22.08	22.00	20.31	19.63	18.44	16.88	16.38	16.00	13.69	11.19	925	7.25	5.50	3.94	2.00	22.38	20.50	20.50
cumulative	hours	0.00	3.80	21.46	26.32	29.38	45.33	46.53	53.03	68.85	72.93	78.57	92.75	117.70	14138	147.07	16523	173.50	16933	213.83	236.87	245.82	269.75	293.76	310.08	341,78	364.63	390.00	414.32	414.37	429.93	431.33
elanced time	sproonds.	0	13880	63540	13920	14840	67420	11520	16200	56940	14700	13080	58280	89820	85280	20480	65400	29760	67000	86200	89400	25020	86880	86400	87600	85320	82260	91320	87540	180	56040	2040
	Time	1110	1458	837	1229	1633	830	1142	1612	801	.1208	1544	765	852	833	1414	824	1640	830	006	950	1647	1655	1655	1715	1657	1548	1610	1629	1632	808	930
	Date	80/0	60/0	0/10	01/0	01/01	10/11	10/11	10/11	10/12	10/12	10/12	10/13	10/14	10/15	10/15	10/18	10/18	10/17	10/18	10/19	10/19	10/20	10/21	10/22	10/23	10/24	10/25	10/28	10/26	10/27	10/27

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

	Comments	START																												Sec.		
	RPD (KL ma)	i	1	-430%	170%	142	3%	%	7 0	22	12%	ر م	X 0	12%	X.	7	¥.	. 24 24	24	22	7 0	2 <u>7</u>	<u> </u>	27	<u> </u>	r K	27	2%	2%	14	×	K.
	K (1mg)	ı	-8.88E-10	324E-10	3.9711-09	4.56E-09	4.72E-09	5.08E-09	5.06E-09	4.06E-09	5.80K-09	5.59K-09	5.81E-09	6.15E-09	8.29E-09	6.385.09	6.83109	6.71E-09	6.82E-09	7.15E-09	7.1616-09	7.33E-09	7.418-09	7.56E-09	7.60E-09	7.B2E-09	7.94E-09	8.13E-09	8.30E-09	8.36E-09	8.70E-09	8.79E-09
cumuhlive	volume (cc)	00.0	-0.18	91.0	4.B2	6.82	7.84	13.85	14.66	16.06	22.90	24.48	25.28	33.92	35.34	38.75	44.17	46.78	48.97	64.80	67.83	84.86	66.86	76.07	77.10	85.52	69.53	96.79	107.20	107.20	12625	136.91
	KICT	1	-8.9E-10	1.02E-09	8.47E-09	7.588-09	6.011-09	5.78E-09	4.57E-09	4.04E-09	7.745-09	5.30E-09	8.08E-09	1.001-08	4.79E-09	8.338-09	9.B2E-09	3.058-09	1.05E-08	9.B1E-09	7.30E-09	9.05E-09	9.03E-09	9215-09	8.958-09	1.02E-08	1.115-08	1.0816-08	9.95E-09	9.05E-09	1.186-08	1.00E-08
	viac factor	ı		11	1.1	1.1	1.1	1.1		11	1.1	1.1	11	1	1.1	1.1	7	1.1	1.1	11	1.1	1.1	1.1	1.1	: :	1.1		1.1	1.1	1.1	1.1	1.1
	KIC	ı	-6.1.6-10	927E-10	5.88E-09	6.89E-09	5.47E-09	528E-09	4.16E-09	3.87E-09	7.031-09	4.B2E-09	6.52E-09	9.13E-09	4.35E-09	7.57E-09	8.92E-09	2.788-09	9.558-09	B.91E-09	6.641-09	823E-09	8.21 E-09	B.37E-09	8.14E-09	9.26E-09	1.01 E-08	9.798-09	9.05E-09	9.058-09	1.005-08	9.13E-09
	Ħ		ı	ı	,	ı	0.05	-0.38	6.13	90.0	6.13	-0.18	0.12	-0.25	61.0-	0.12	0.00	-0.32	0.19	-0.12	90.0	-0.26	0.43	67.0-	90.0	90.0-	00.0	90.0	0.00	0.00	-0.13	-0.25
	낊	ι	-8.1E-10	927E-10	5.88E-09	8.89E-09	6.30E-09	6.61E-09	6.32E-09	4.51E-09	7.49E-09	7.82E-09	3.73E-09	1.01E-08	7.87E-09	5.95E-09	8.92E-09	7.72E-09	6.30E-09	9.38E-09	6.22E-09	9.26E-09	4.64E-09	1.038-08	7.43E-09	9.50E-09	1.01E-06	9.53E-09	9.05E-09	9.05E-09	1.10E-08	9.75E-09
	æ	35.25	35.30	35.20	33.75	33.19	32.81	30.04	30.88	30.25	28.12	27.63	27.38	24.89	24.25	23.81	21.50	21.00	20.63	18.19	17.31	15.08	14.50	11.88	11.25	8.63	7.38	5.12	1.88	33.81	27.88	23.94
cumulative	hour	0	3.55	9.73	23.93	28.53	32.13	48.85	50.48	56.08	72.90	78.73	80.73	96.80	10028	104.78	120.85	124.65	12828	14452	153.43	168.87	178.80	193.02	198.55	216.72	225.00	240.97	265.48	290.05	321.62	345.95
elapsed time	Beconda	c	12780	22280	51120	16920	12600	59460	6800	20160	80540	13800	14400	67840	12540	16200	67120	14400	13080	58440	32100	65560	27840	69100	19920	65400	29820	57480	88280	68320	113760	87600
	Ifme	4	001	1720	732	1214	1544	815	1005	1541	830	1220	1820	824	1163	1823	815	1216	1553	807	1702	828	1612	837	6071	919	1636	834	508	906	1842	1702
	Date	20/01	10/01	10/01	10/08	10/08	10/08	80/01	60/01	10/01	01/01	01/01	10/10	27/21	10/11	19/21	10/12	10/12	10/12	10/13	10/13	71/01	10/17	10/15	10/15	10/18	10/16	10/13	10/18	10/18	10/10	10/20

THO-STACE KORGINOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-9 Geometric factor—G=0.04030 Depth factor=160.0" TC values from TEG-1

	Comments					+1 Hr Daylight	Savings Time	2	
	RPD (RL ma)	×	X 0	X	XI .	X 0	X 0	7 0	XI
	K (Lm)	8.89E-09	8.93E-09	8.97E-09	9.02E-09	8.99E-09	6.97E-09	6.978-09	9.07E-09
cumulative	volume (oc)	91091	161.01	171.45	181.86	192.10	202.55	202.55	211.77
	KICT	1.02E-08	9.56E-09	9.83E-09	9.B9E-09	8.48E-09	8.72E-09	8.72E-09	1.22E-08
	visc factor	1.1	T1	11	1.1	=	71	11	77
	XIC	9.26E-09	8.89E-09	8.75E-09	8.99E-09	7.718-09	7.92E-09	7.92E-09	1111-08
	Ħ	0.13	0.00	ı	1	-031	47.0	0.00	90.0
	Ħ	8.93E-09	8.59E-09	8.75E-09	8.99E-09	8.53E-09	9181-09	9.18E-09	1.091-08
	æ	20.44	17.08	13.61	10.83	7.38	4.13	27.75	24.88
cumulative	hour	370.03	394.38	416.08	441.08	466.33	490.25	490.30	E1803
elensed fime	accords.	98700	87880	85320	82800	00808	86100	180	67000
	£	1707	1728	1710	1810	1825	1620	1823	613
	2	10/21	10/22	10/23	10/24	10/25	10/28	10/28	10/27

END OF TEST TSB-9

TWO-STACE BOPEIDLE FIELD PERMEABILITY TEST STAGE ONE DATA

TSB-10 Geometric factor-G=0.04534 Depth factor=1.05.25" TV values from TBG-1

Comments		START																										Refil				
RPD (KL ma)		ı	ı	20%	28%	36%	34	7	¥	24	X	X O	2X	2%	1%	37	2 2	×	24	1 2	*	17	. 27 27	17	20	1%	1%	20	11	70	X i	24
K (1.79)		\$	1.748-08	2.131-08	1.80E-08	1.128-08	1.091-08	00-1166	9588-09	9.12E-09	9.05E-09	8.09E-09	8.89E-09	8.70E-09	6.7616-09	8.51E-09	6.381-09	8.40E-09	8.10E-09	B.06E-09	7.72E-09	7.78E-09	7.631-09	7.69E-09	7.701-09	7.76E-09	7.68E-09	7.661-09	7.75E-09	7.77E-09	7.66E-09	7.548-09
cumulative volume (xx)	٠٠.	00:0	2.41	4.82	6.62	15.28	1625	18.05	25.89	27.08	28.30	36.33	37.76	38.55	46.55	16.97	47.18	54.81	55.81	62.03						85.52		93.35	102.99	106.39	114.84	121.46
מכד		1	1.74E-08	2.781-08	928E-09	8.92E-09	6.31E-09	5.52E-09	8.91E-09	3.2212-09	8.18E-09	9.23E-09	4.76E-09	5.47E-09	80-36T6	2.02E-09	4.88E-09	9.18E-09	2.84E-09	7.72E-09	1.55E-09	8.38E-09	3.04E-09	8.22E-09	B.01 E-09	8.33E-09	7.146-09	7.14E-09	8.39E-09	8.598-09	6.40E-09	6.036-09
viec fector		ı	1.1	=	1:1	11	11	1.1	1.1	1.1	1.1	1.1	1.1	==	1.1	1.1	1.1	1.1	1.1	"	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
KIC		ı	1.588-08	2.51E-08	8.44E-09	8.1118-09	6.74E-09	5.02E-09	8.10E-09	2.938-09	7.44E-09	8.39E-09	4.331-09	4.97E-09	8.35E-09	1.B3E-09	424E-09	B.35E-09	2.58E-09	7.021-09	1.41 E-09	7.62E-09	2.77E-09	7.47E-09	7.28E-09	7.57.6-09	6.49E-09	6.49E-09	7.63E-09	7.818-09	5.62E-09	5.48E-09
Ħ		ı	1	ı	909	-0.38	-013	90.0	-013	97.0	0.12	-026	010	0.12	0.00	632	0.10	-0.12	90.0	-0.25	0.43	97.0	90.0	90.0	000	90.0	000	0.00	0.19	-0.13	-0.25	0.13
Ŋ		•	1581-08	2511-08	927E-09	9.45E-09	9.89E-09	5.86E-09	8.58E-09	5.71E-09	5.85E-09	9.331-09	7.62E-09	3.381-09	8.35K-09	6.73E-09	1.02E-09	8.80E-09	2.18E-09	6.03E-09	-2.0E-09	9.54E-09	2.07E-09	7.69E-09	7.28.8-09	7.338-09	6.491-09	6.49E-09	7.17E-09	B.90E-09	8.43E-09	5.16E-09
룑		35.06	34.3	33.58	33.00	30.31	30.00	29.44	27.00	26.63	28.25	23.75	23.31	23.08	20.88	20.44	20.38	18.06	17.76	16.76	16.00	13.56	13.38	11.19	10.25	9.44	6.00	31.50	28.50	27.44	24.01	22.75
cumulative elapsed time bours		000	2.72	£ 7 7	7.92	24.45	26.28	31.58	48.70	52.55	58.55	72.60	78.08	80.58	98.45	100.46	104.07	120.30	129.18	144.72	152.72	160.82	174.32	192.48	200.78	216.77	241.35	241.37	265.85	272.88	297.25	321.32
elapsed time		c	0780	00.5	12540	59520	6800	20180	60540	13880	14400	57780	12540	16200	67120	14400	13020	58440	31980	65920	28800	67960	19800	65400	20880	57540	88500	80	88140	25320	67720	96640
į		07%	6101	1215	1544	4 E	1006	1542	831	1222	1822	826	1154	1824		1216	1553	508	1700	832	1632	838	1408	e = = = = = = = = = = = = = = = = = = =	3631	1000 1000 1000 1000 1000 1000 1000 100	010	110	070	1642	1704	1708
<u>.</u>	3	80,0	80/0	20/0	00/0		00/0	00/0	2/6	01/0	21/0	27/21	17/01	17/01	10/13	10/12	21/01	21/01	27/01	71/01	71/01	10/15	10/15	81/01	01/01	01/01	1/01	01/01	01/01	10/10	10/20	10/21

TRO-STACE BOREHOLE FIELD PERMEABULTY TEST STACE ONE DATA

Geometric factor—G=0.04534 Depth factor=155.25" TV values from TBC-1 158-10

Comments		+1 Hr Daylight Savings Time													
RPD (KLym)	5 2		2 2	Ħ	6										
K (Lm)	7348-09	7291-09	7.171-09	7.081-09	7.101-09										
cumulative volume (cc)	135.06	14234	149.57	158.99	18222										
ומ כו מינו	20-102-0 20-102-0	8.50E-08	5.32E-09	5.47E-09	7.52E-09										
viec factor	= :	<u> </u>	: =	1	1.1										
Kac	6.15E-09	D. 34 E-US	4 838-09	4.978-09	6.B3E-09										
ង	0.00	ł	٠ -	9	90.0										
Ħ	67212	5.845-09		8.151-09	8.59E-09										
뵨	20.89	18.44	1626	00.41	10.08										
cumulative elapsed time hours	345.87	369.37	392.40	417.52	467.40										
elapsed time	87680	85320	82920	00700	67180										
Ę,	1729	1711	1813	1828	1620										
5 5	72/01	10/23	72/01	10/26	10/26 10/27										

END OF TEST TSB-10

TWO-STACE BORRIDLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-11 Geometric factor-G=0.04030 Depth factor=234.75" IV values from TBG-2

•	Comments	START																															
	RPD (KLyna)	•	1	25%	33%	6 %	20	22	2	7,7 1,7	K 1	¥ ;	Κ.	K !	71	5 2	K :	29	2 2	K :	2%	<u> </u>	K	X :	17	20	1,4	%	34	X 2	22	2	5
•	K (t va)	ı	8.83E-09	6.70E-09	4.781-09	4.57E-09	4.21E-09	4.02E-09	3.77E-09	3.711-09	3.62E-09	3.695-09	3595-09	3.55E-09	3508-09	3.43E-09	3.511-09	3.26E-09	3.101-09	3.111-09	3.0612-09	3701-09	3.08E-09	3.10E-09	3.08E-09	3.078-09	3.058-09	2.9815-09	2.89E-09	2.838-09	2.79E-09	2758-00	5.10E-03
cumulalive	volume (œ)	00.0	2.83	3.82	9.25	986	10.83	15.45	1626	16.87	21.88	22.68	23.10	26.89	28.11	28.11	32.93	36.94	35.95	40.98	41.15	46.78		80.98						•	75.49		07:07
	KC	1	8.83E-09	4108-09	3.838-09	1.758-09	2.49E-09	3.85E-09	722E-10	202E-00	422E-09	8.116-10	1.986-09	3.34E-09	2.26E-09	1.57E-09	4.04E-09	1.98E-09	4.22E-10	3.158-09	1.588-09	3.51E-09	251E-09	3.40E-09	2.B6E-09	3.02E-09	2.25E-09	2.15E-09	1 B2E-09	2.05.8-09	20 2000	60-311.3	2.198-09
	viac. factor	1	1.1	7.7	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	11	1.1	-1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	: =	::	. ;	::
	KIC	,	7.85E-09	3.725-09	3.48E-09	1.59E-09	2.27E-09	3.3218-09	8.58E-10	2.66E-09	3.83.5-09	7.37E-10	1.B0E-09	3.03E-09	2.05E-09	1.42E-09	3.67E-09	1.78E-09	3.84E-10	2.861-09	1.44E-09	3.198-09	2.28E-09	3.09E-09	2.80E-09	2.748-09	2.05E-09	1.95E-09	1.65.6-09	00 340 1	1.07 800	1.925-09	1.996-09
	ክ	ı	00.0	000	-0.32	-0.12	0.00	-0.12	-0.19	90.0	-0.12	9.10	90.0	90.0	97.0	210	-0.12	-0.25	0.38	-0.50	0.12	-0.12	-0.07	0.00	-0.08	0.00	-0.06	-0.25	90	3 8	0.00	•	1
	껖		7.85109	3.725-09	4.308-09	4338-09	227E-09	3.62E-09	2.73E-09	2.021-09	4.151-00	3.0716-09	1231-09	3.20E-09	4.118-09	0.0012+00	3.998-09	222E-09	-1.7E-09	4.22E-09	4.79E-10	3.481-09	2.65E-09	3.0915-09	2.711-09	2.74E-09	2.431.09	2.42109	1 778-09	20 920	60-1201	1.925-09	1.99E-09
	롣	33.75	32.87	32 F.R	30.87	30.88	30.38	28.94	28.69	2850	26.94	26.59	28.58	25.38	25.00	25.00	23.50	22.26	22.58	21.00	20.94	19.50	19.00	17.88	1638	14.88	14.50	13.19	19.95	777	2711	10.25	925
cumulative	hour	6	90.4	4.00	24.68	28.53	32.12	48.95	52.83	56.83	72.85	76.33	80.85	96.70	100.88	104.32	120.55	144.97	152.92	169.07	174.55	192.70	201.00	217.00	241.82	266.08	273.10	297.52	921 K7	10.120	345.92	369.67	392.67
elapsed time	spaccas	ć	- 288	13540	20180	8880	20100	60600	13980	14400	57680	12540	16260	57080	14340	13080	58440	67800	28820	58140	10740	65340	29880	67800	88820	ARORO	25.260	87900		00000	87860	82200	82600
	Time	ć	9.5	1516	010	1001	1549	33.2	1225	1625	826	1155	1628	817	1218	1554	F. F.	. E	1830	939	8071	417	1835	835	216	070	278	1704	902	80/1	1730	1715	1615
	Dale	80/ 01	90/01	90/01	10/08	80/01	00/01	10/01	07/01	01/01	10/11	10/11	10/11	10/12	10/12	21/01	21/01	7/01	10/11	10/15	27/01	10/10	10/18	21/01	81/01	01/01	81/01	61/01	10/20	12/01	10/22	10/23	10/54

THO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-11 Geometric factor-G=0.04030 Depth factor=234.75" TV values from TEC-2

	Comments	+1 Hr Layugut	Sevings Time	
	RPD (RLvm)	K i	2 2	KI
	K (-m)	2.67E-09	2.611-09	2.57E-09
cumulative	volume (∞)	81.92	85.93	8834
	KICT	1.38E-09	1.601-09	1.61E-09
	visc factor	11	1:1	-
	KIC	1265-09	1.45E-09	1.48E-09
	ដ	-031	920	-0.25
	Ħ	1.82E-09	2.42E-09	2.191-09
	쿈	8.25	7.00	6.25
cumulative	ponu	417.92	441.77	457.83
slaved time	seconds	00808	85880	67120
	Time	1830	1821	613
	Date	10/25	10/28	10/27

END OF TEST TSB-11

TRO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE ONE DATA

	3*		
TSB-12	Geometric factor—G=0.04534	Depth factor=288.0"	TC values from TEG-2

Comments	START						Reposited value																			Keplacement	TEC Stabilize	+1 Hr Daylight	Savings Time	1
RPD (KLvna)	•	ı	7121	200	727	112	22	267	23%	**	13%	22	12%	8%	10%	11%	10%	3%	7	<u>*</u>	¥ 1	× ×		4 2	K 2	20	1%	3%	20	
K (twa)	•	7.9215-08	80-180	00-4061	7248-09	6.50E-09	8.15E-09	4.76E-09	3.761-09	3.631-09	3101-00	3.121-00	2.77E-09	2551-09	2.30E-09	2.05E-09	227E-09	00-17E-0	235100	9746	23/15/00	2208-00	90 91 4 6	2241-04	2.19K-09	2.19E-09	2.21E-09	2.14E-09	2158-00	
cumulative volume (œ)																						76.47								
מכן	1	7 02 E-0A		13/6-10	2.071-09	2.43109	3.89E-09	2.32E-09	1.B5E-09	1.79E-10	1.801-09	1.531-09	1.08E-09	1.538-09	7.88E-10	3.718-10	7.55.00	00 200	3.101.0	2.456-08	2528-09	1375-09	1.715-09	1.55109	1.64E-09	2235-09	2.455-09	105-00	00 2011	770F-70F
visc factor	ı	-	77	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	=	! =	: -	: :		77	1.1	1.1	:	1.1	1:1	1.1	1.1	=	1 -	T: 1	1.1
KIC		800	00-907/	1.B0K-10	1.88E-09	2.211-09	3.548-09	2111-09	1.68E-09	1.62E-10	1.468-09	1391-09	0.888-10	306-00	7 187-10	01-285	07-9070	80-120 9	2.B7E-09	2251-09	2298-09	1248-09	1.58E-09	1.408-09	1.49E-09	2.038-09	00 2000	10 acc.	1.00E-08	2.158-09
ង	ı	1 6	0.00	0.00	-032	-0.12	0.00	-0.12	-026	-0.12	000	-0.12	12	4		7 6		200	000	90.0	000	90.0	-0.25	90.0	000	•	ı	, ;	7	-0.35
ij	ı	1 5	7.20E-08	1.B0E-10	2.79E-09	3.54E-09	3.54E-09	2.42E-09	2.13K-09	2117-00	1 487-00	2.87E-00	1 25 1 100	100 400	1.062.08	V.42E-10	3.362-10	7.25E-09	2.B7E-09	2.36E-09	2.29E-09	1.84E-09	2.031-09	1.52E-09	1 495-09	2031-00	20.20	80-3672	1.56 E-09	3.115-09
뮲	3	21.00	28.38	28.36	27.38	27.06	27.08	28.12	70 72	24 R.I	1016	22.88	0000	1000	0777	21.70	2178	2025	1926	17.94	16.63	16.38	1631	1450	13.60	1961	2031	11.50	10.63	9.50
cumulative elapsed time hours		00.0	156	6.32	21.37	26.26	20.28	15.05		73 EK	00.50	96.00	or or	27:011	142.16	165.35	169.95	197.92	213.26	237.78	263.16	270.00	293.55	317.48	34108	200	00'090	38872	413.80	430.45
elapsed time seconds	,	0	6680	17160	54180	08061	14530	0000	00150	2000	0095	0082	14640	71460	91580	83520	88680	28580	66200	86320	01440	24540	84780	08188		00200	84840	82800	91280	69580
Jas		1057	1230	1718	018		1616	101	9 6	000	1130	746	1149	740	906	818	856	1652	812	779	1008	1667	1830	200	0201	1808	1830	1530	1991	824
मुख		10/08	10/08	80/01	90/01	an/o1	80/01 00/01	70/07	01/01	11/01	10/11	21/01	21/01	10/13	10/14	10/16	10/18	10/16	10/17	10/18	01/01	01/01	6/01	09/01	17/01	10/22	10/23	10/54	10/25	10/28

TRO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE ONE DATA

TSB-13 Geometric factor-G=0.04030 Depth factor=356.8" TC values from TBG-2

	Commenta	START																										i	Refil			
	RPD (KLma)	1	ı	81%	797	8%	9 %	13%	*	22	22	22	7	1%	27	Ke .	6%	X 0	32 2	24	K i	71	17	X ?	7 7	K	7	3%	, 0	0 0	7	K.
	K (Lm3)	ı	2.018-06	1.07E-08	6.72E-09	6.34E-09	5.82E-09	5.12E-09	4.036-09	4.70E-09	4.81E-09	4.51E-09	4.33E-09	427E-09	4.19E-09	4.07E-09	3.878-09	3.85E-09	3.72E-09	3,851.09	3.508-09	3.57E-09	3.53E-09	3.52E-09	3.458-09	3.40E-09	3.375-09	3266-09	3.276-09	3268-09	3.228-09	3.20E-09
cumulative	volume (cc)	00.0	4.59	181	16.03	18.05	10.05	25.89	27.50	35.02	37.14	38.13	43.75	46.56	45.97	61.59	53.58	69.40	68.82	65.24	68.24	72.47	74.68	79.48	86.32	93.35	94.96	100.77	101.02	108.44	115.09	121.90
	אנט	ı	2.018-08	6.296-09	4.86E-09	4.19E-09	2.46E-09	3.88.8-09	2.84.6-09	4111-00	2,335-09	2.77E-09	3.45E-09	297E-09	2.19E-09	3.316-09	1.158-09	3.72E-09	9.B0E-10	3.02E-09	2.301-09	3298-09	2.57E-09	3286-09	2.058-09	2.93.6-09	2.20E-09	2.26E-09	2.27E-09	3.00E-09	2.60E-09	2.86E-09
	viec factor	,	1.1	=	11	11	1.1	11	7	11	11	11	11	1.1	11	11	11	1.1	1.1	1.1.	77	11	1.1	П	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
	KIC	•	1.525-06	5.71E-09	4.42E-09	3.811-09	2.23E-09	3.51E-09	2.40E-09	3.74E-09	2115-09	2.52E-09	3148-09	2.70E-09	1.995-09	3.011-09	1.051-09	3.381-09	821E-10	2.76E-09	2.09109	2.99E-09	234E-09	2.98E-09	2591-09	2.66E-09	2.00E-09	2.0612-09	2.06E-09	2.00E-09	2.44E-09	2.60E-09
	ង	•	000	0.00	-0.32	-0.12	00.0	-012	910	90.0	970-	90.0	90.0	670	0.12	-015	631	90.0	0.38	920	0.12	-0.12	-0.07	0.00	-0.06	0.00	90.0-	-0.25	0.00	90.0-	00.0	1
	Ħ	ı	1.82E-08	5.715-09	5.035-09	4.71E-09	223E-09	3.72E-09	3.875-09	3.83E-09	4.23E-09	2115-09	3.25E-09	4.09E-09	1.03E-09	324E-09	2.10E-09	327E-09	-8.0E-10	3.86E-09	1.516-09	3.19E-09	2.61E-09	2.98E-09	2.66E-09	2.66E-09	227E-09	2.39E-09	2.39E-09	2.BBE-09	2.44E-09	2.60E-09
	룑	67.6	32.40	31.76	20.13	28.50	28.19	28.08	25.58	22.94	22.58	22.25	20.50	1994	1881	18.08	17.44	15.83	18.81	13.61	1350	11.56	10.88	9.38	7.25	5.06	1.56	2.75	35.19	32.86	30.81	28.69
cumulative	hours		0.00 7.00 7.00 7.00	80.4	22.03	25.92	29.95	48.85	50.43	70.55	73.20	77.53	93.47	97.53	101.27	117.38	126.22	142.82	149.57	166.02	17223	190.65	198.58	213.92	238.45	263.85	270.67	294.20	295.20	318.20	342.63	366.25
J. J	seconds	•	5	07071	54180	13980	14520	60120	13620	72420	9540	15800	67360	14840	13440	58020	31800	59760	24300	59220	22380	66300	28560	55200	08320	91440	24540	84720	3600	82800	87960	85020
	Time		1016	1717	820	1213	1815	867	1244	851	1130	1550	748	1150	1534	172	1631	206	1552	918	1432	857	1653	813	845	1009	1658	1630	1730	1630	1656	1633
	Dale	4	90/01	90/01	00/01	80/01	10/05	10/10	10/10	10/11	10/11	10/11	10/12	10/12	10/12	10/13	10/13	71/01	71/01	10/15	10/15	10/18	10/16	10/17	10/18	01/01	01/01	10/20	10/20	10/01	10/22	10/23

TRO-STACE KOREKOLK FIELD PERMEABILITY TEST STACE ONE DATA

TSP-13 Geometric factor-G=0.04030 Depth factor=358.9" TV values from TEG-2

	Comments	11.34.36.16.	+1 Hr Layugut	Seving lime
	RPD (KI.m.)	K 1	K2 7	7 2
	K (Lm)	3.185-09	3.114-09	3,06%-09
cumulative	volume (cc)	128.52	13484	14018
	KICT	2.B7E-09	2.07E-09	1.845-09
	viec factor	1.1	- 1	"
	KIC	2.51E-09	1.88E-09	1.87E-09
	Ħ	1	-0.37	-0.89
	Ħ	2.51E-09	2.31E-09	2,00E-09
	롡	26.63	24.83	23.00
cumulative	hour	389.20	414.57	431.12
alaned time	Beconds	82620	91320	59580
	Time	1530	1552	825
	Date	10/54	10/25	10/28

END OF TEST TSB-13

ATTACHMENT 2B

TSB SPREADSHEET CALCULATION SUMMARY

STAGE 2 (K2')

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-1 STACE TWO Geometric factor - G = 0.008578" Depth factor = 239.12" IC values from Replacement TBG-2

•	Comments		START										F-C																		3 2		
. !	RPD (KI wa)		ı		172	4 4	19%	%	24	X	22	X X	۲ ا	23 24	7	<u> </u>	4 4	K :	X	29	27	Ķ.	K !	K i	X 1	7 1	71	72	71	27	X 0	ĸ	о К
• •	K (tws)		i	1.041-08	8.73E-09	8.37E-09	60-106.9	8.58E-09	6.25E-09	6.70E-09	5.59E-09	6.49E-09	5.49E-09	5.39E-09	5.33E-09	627E-09	5.06E-09	5.011-09	4.061.00	4.581-09	4.88E-09	4.498-09	4.468-09	4.43E-09	4.35E-09	4.348-09	4.32E-09	4.23E-09	4.19E-09	4.12E-09	4.12E-09	4.14E-09	4.13E-09
cumulative	volume (oc)	•.	0	30.34	34.78	36.20	47.48	5128	63.08	6232	94.74	96.88	86.96	60.63	63.88	86.27	9634	99.14	101.18	10821	114.03	121.66	124.88	125.30	133.95	135.75	137.17	146.02	149.62	157.47	157.47	16429	174.75
	ונו נו		t	1.048-08	4.07E-09	4.79E-09	4.52E-09	4188-09	2.33E-09	3.B0E-09	3.85E-09	3.81.8-09	3.B1E-09	4.97E-09	3.751-09	3.BBE-09	3.801-09	3.45E-09	3.44E-09	2.138-09	6.5812-09	3.07E-09	3.50E-09	2338-09	3.431-09	4.17E-09	3.208-09	3.291-09	3.0816-09	3.11E-09	3.116-09	4.B3E-09	6.51E-09
	vinc. factor		1	1.1	1.1		1.1	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1.	_	1.1	1.1	1.1	1.1	1.1		1.1	1.1
	KIC		ı	9.44E-09	3.70E-09	4.38E-09	4.118-09	3.BOE-09	2.128-09	3.468-09	3501-09	3.461-09	3.468-09	4.52E-09	3.411-09	3.518-09	3.45E-09	3.13E-09	3.138-09	1.938-09	5.96E-09	2.791-09	3.181-09	2.12E-09	3.12E-09	3.791-09	2.916-09	2.99E-09	2.B0E-09	2.B3E-09	2.B3E-09	4.39E-09	5.92E-09
	ដ		1	-0.25	6.13	0.13	90.0	0.03	-0.12	613	0.00	0.13	00.0	0.00	0.19	00.0	90.0	61.0	000	0.19	0.07	0.25	-0.07	0.13	0.12	0.00	0.25	00.0	0.07	-0.06	0.00	90.0	90.0
	ZZ		•	9.70E-09	4.09E-09	3.368-09	4.04E-09	3.90E-09	2.888-09	3.821-09	3.50E-09	2.912-09	2918-09	4.52E-09	4.27E-09	3.51 E-09	3.52E-09	3.69E-09	3.13E-09	2.12E-09	5.74E-09	2.528-09	3.42E-09	1.06E-09	2.99E-09	3.79E-09	1.86E-09	2.99E-09	2.63E-09	2.90E-09	2.90E-09	4.27E-09	5.05E-09
	롡		32.06	22.63	21.25	20.51	1731	16.13	15.58	12.69	11.94	11.25	34.38	30.13	29.19	26.38	26.26	24.38	23.75	21.58	19.75	17.38	16.38	1825	13.58	13.00	12.56	9.81	8.69	6.25	35.75	33.63	30.38
cumulative elapsed time	hour		000	16.93	22.93	25.27	40.85	46.33	50.20	64.72	58.87	73.05	61.67	89.20	93.00	97.00	112.52	118.87	120.22	138.55	144.18	161.10	168.40	168.83	185.08	187.80	192.17	209.20	217.15	232.98	233.02	241.43	257.08
elapsed time	ecconds		c	60960	21800	8400	56100	19740	13920	52280	14220	15780	300	67840	13660	14400	55860	14940	12780	86000	20280	60900	19080	8040	59220	9780	15720	61320	28620	57000	120	30300	56340
	Time		004	75.8	1358	8181	751	1320	1712	7.43	1140	1803	1608	812	1200	1800	731	1140	1513	933	1511	808	1324	1538	805	1048	1510	812	1609	750	108	1838	908
	Date		ac/ 01	10/21	10/27	10/01	10/28	10/28	10/28	10/20	10/20	10/20	10/20	02/01	08/01	0E/01	15/61	10/01	10/31	10/11	10/11	11/02	11/02	11/02	11/03	11/03	11/03	70/11	70/11	11/05	11/02	20/11	90/11

á

•

TWO-STACE BOREHOLE PIELD PERMEABILITY TEST STACE TWO DATA

ISB-1 STAGE TWO
Geometric factor - G = 0.006576"
Depth factor = 239.12"
IV values from Replacement TEG-2

	Comments													ISI ON	
	RPD (KL ma.)	, !	X 0	17	20	\$ 1	X	1%	•	4	×	•	41	ĭ	
	(CM)		4.118-09	4.078-09	4 04 1.50	100 P	4.02E-09	3091-09	400	2012	3.00.00	00 400 6	2000	3 B3K-09	
cumulative	volume (cc)		180.19	190.03	86.701	07141	203.13	208.15		210.37	219.79	7 0 0 0 0	1977	231.47	
	5	1	3.551-09	3.511-09		2000	3311-09	2.501-00		2.B2E-09	2.731-09		50-1162	2.84.8-09	
	wien factor		1.1	1.1	::		1.1	=	1 :	=	TT	!;	=		!
	J.1.1	2	323E-09	3 108-00		3231-08	3.01 E-09	2 25 1 00		2.561-09	2.481-00		2.651-09	2588-00	
	Ę	2	90.0	5		20.0	0.07	744	3	6 004	9		000	9	1
	5	2	3.358-09	9.0KP_00	2070	3.411-09	2.948-09	00	2.01.0	2.851-09	9741-00		2.851-09	9078-00	90.9
	2	로	28.69	60 30	2003	24.31	21 58		20.00	17.76	A. A.		14.19	12.75	16.10
comulative	ann nadan	Poor I	285 RO		77707	289.00	305 5.B		313.05	328.37	67 466	321.46	352.50	~	201.40
	amn madea	seconds	21380	9000	01080	24480	2000	00.00	27000	65020		25000	54300	0700	35040
	i	Time	8/81	0101	218	1600	768	000	1605	799		1620	730		1824
		٩	90/11	00/11	11/07	11 /07	80/11	00/11	11/08	11 /00	90/11	11/08	11/10		11/10

END OF TEST TSB-1 STACE TWO

THO-STACE IOREHOLE FIELD PERMEABILITY TEST STACE THO DATA

ISB-2 STAGE TWO
Geometric factor - G = 0.006459"
Depth factor = 356.75"

To values from Replacement TEG-3

comments	START	Dry refil				:	2 2		i	Dry reful		i			E E					E		į	Refil	i	Reference to		Dry refill			1	E C
RPD (KLws)	ı	•	2002	197	17	787	×	8%	S S	29	3%	27	X 0	¥	6	X	×	0%	2%	0%	K :	20	%	17	80	, ע	12%	15%	20	20	20
K (Lms)	1	ı	7.961-09	9.631-09	9.70E-09	1.581-08	1.581-08	1.71E-06	1.771-08	1911-08	1.961-08	2.018-08	2.011-08	2101-08	2101-08	2131-08	2.158-08	2.155-08	2.19E-06	2.198-08	2.22E-08	2.22E-08	2.221-08	2.25E-08	2.25E-08	2.27E-08	2.01E-08	2,33E-08	2.34E-08	2.348-08	2.348-08
cumulative volume (cc)		106.80	153.06	167.15	167.15	264.71	264.71	301.91	324.01	364.65	386.78	417.32	41732	515.88	616.88	542.81	568.55	568.55	881.88	661.96	692.23	713.34	713.34	620.33	820.33	858.38	928.54	965.15	970.64	984.46	984.46
KICT	1	ı	3.118-08	2.688-08	2.88E-08	2.801-08	2.80E-08	2.728-08	2.49E-08	2368-08	3.00E-06	2.70E-08	2.70E-0B	2.508-08	2.51E-08	2.82E-08	2.83E-08	2.63E-08	2.47E-08	2.48E-08	2.B7E-08	2.518-08	2.518-08	2.41E-08	2.416-08	2.76E-08	2.76E-08	2.78E-08	2.49E-08	2.76E-08	2.76E-08
vinc Inclor	11	1.1	77	1.1	11	11	1.1	1.1	1.1	-1	1.1	1.1		1.1	1.1	11	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
KIC	ı	ı	2.83E-08	2.441-08	2.441-08	2361-08	2361-08	2.47E-08	226E-08	2.168-08	2.738-08	2.45E-08	2.451-08	2.281-08	2288-08	2.57E-08	2398-08	2391-08	2.251-08	2.258-08	2.818-08	2.281-08	2.281-08	2.191-08	2.19E-08	2.51 E-08	2.516-08	2.536-08	2.26E-08	2.518-08	2.51E-08
ង	ı	ı	6.13	0.19	000	610	0.00	-013	0.32	0.00	90.0	210	000	90.0	0.00	613	90.0	0.00	-0.12	0.00	00.0	0.00	00.0	-0.19	0.19	0.00	00.0	-0.13	0.05	0.13	0.00
豆	ı	ı	2.8611-08	2338-08	2331-08	2381-08	2.381-08	2.50E-08	2.161-08	2.161-08	2.751-08	2.42E-08	2.42E-06	2.28E-08	2.28E-08	2.51E-08	2.41E-08	2.41E-08	2.26E-08	2.28E-08	2.61E-08	2.28E-08	2.28E-08	2.21E-08	2.21E-08	2.51E-08	2.518-08	2.55E-08	2.23E-08	2.348-08	2.34E-08
펉	23.13	32.38	17.94	13.58	32.63	231	31.08	19.50	12.63	35.50	28.00	19.13	35.38	4.75	35.50	27.13	19.13	35.50	6.50	35.38	25.94	19.38	35.00	1.75	33.63	21.81	34.88	23.50	19.31	17.50	35.19
cumulative clapsed time hours		17.48	23.48	26 77	25.58	41.33	41.37	46.85	50.72	88.00	80.18	73.56	73.58	89.75	89.78	93.53	97.50	97.58	113.02	113.07	117.30	120.73	120.80	139.02	139.12	144.67	161.68	166.92	169.17	170.10	170.17
chaped time	c	42040	21800	R220	420	55620	120	19740	13920	65020	11480	15720	120	58200	120	13500	14280	300	55560	180	15240	12360	240	65580	360	10080	61260	18840	8100	3360	240
Time	667	750	1359	4.4.	1623	760	762	1321	1713	830	1141	1603	1605	815	718	1202	0081	1805	731	737	8711	1214	1518	169	266	1810		1325	1540	1636	1640
Date	96/01	10/20	10/21	10/01	10/21	10/28	10 /2R	10/2B	10/28	10/20	10/20	10/20	10/29	05/01	08/01	10/30	0 / C	200	2 2	16/01	16/01	10/31	10/01	[] []	[] []		11/01	11/02	11/02	11/02	11/02

TWO-STAGE BOREHOLE MELD PERMEABILITY TEST STAGE TWO DATA

...

TSB-2 STACE TWO
Geometric factor - G = 0.006459"
Depth factor = 358.75"
TC values from Replacement TEG-3

	comments		1	07 rd		Z	1	Ę	,			2	į		į		!		į			2		R		E		Refil		2		E	
	MPD (KI.m.)	K K	X 0	21%	22%	212	22%	X X	×	X 0	×	0	X :	20	X	X	X 0	X	X (۷ 0	0%	X 0	0	20	, 2	0%	0%	7 0	0%	0%	7 0	20	X
	(La) M	2.351-08	2.351-06	1.902-08	2.36108	1.911-08	2.371-06	2.37E-08	2388-08	2.361-06	2391-06	2391-06	2.40E-08	2.401-08	2.411-08	2.418-08	2.42 I- 08	2.42E-08	2.43E-08	2.431-08	2.448-08	2.448-08	2.44E-08	2.448-08	2.4415-08	2.44E-08	2.458-08	2.458-08	2.451-08	2.451-08	2.46E-08	2.468-08	2.46E-08
cumulative	volume (cc)	1078.77	1092.67	1097.69	112021	1120211	1218.77	1218.77	1271.47	1271.47	1366.61	1368.81	142250	142250	1519.54	1519.84	1577.58	1577.58	1680.33	1680.33	1728.37	1726.37	1826.31	1626.31	1874.77	1874.77	1968.27	1968.27	2027.57	2027.57	2122.49	2122.49	2161.79
	ומכז	2518-08	2.20E-08	2.20E-08	2.89.5-08	2.89108	2.50E-08	2.50E-08	2.70E-08	2.71E-08	2.52E-08	2.52E-08	2.831-08	2.84E-08	2.551-08	2.55E-08	2.728-08	2.738-08	2.58E-08	2.59E-08	2.735-08	2.738-08	2.49E-08	2.49E-08	2.548-08	2541-08	2.55E-08	2.55E-08	2.64E-08	2.64E-08	2.595-08	2.59E-08	2.71 E-08
	visc. factor	1.1	1.1	1.1	1.1	11	11	1.1	1.1	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1		1.1
	KIC	2288-08	2.00E-08	2.00E-08	2.83E-08	2.631-08	227E-08	2.27E-08	2.461-08	2.48E-08	2.29E-08	2291-08	2.40E-08	2.40E-08	2.32E-00	2.32E-08	2.48E-08	2.48E-08	2.35E-08	2.351-08	2.48E-08	2.488-08	2.26E-08	2261-08	2.31 E-08	2315-08	2.32E-08	2.32E-08	2.40E-08	2.40E-08	2.358-00	2.35.8-08	2.47E-08
	ክ	00.0	00.0	0.00	0.18	000	-0.12	0.00	90.0	000	0.00	0.00	910	0.00	0.00	0.00	91.0	000	90.0	0.00	90.0	000	0.00	0.00	-0.38	00.0	0.44	0.00	-0.12	000	0.00	000	-0.13
	2	2281-08	2.001-08	2.001-08	2561-08	2561-06	2.281-08	2.28K-08	2.451-08	2.451-08	2.29E-08	2291-08	2.37E-08	2.371-08	2.331-08	2.331-08	2.45E-08	2.45E-08	2.35E-08	2.35K-08	2.491-08	2.498-08	2.2612-08	2.28E-08	2.37E-08	2.37E-08	2.29E-08	2.29E-08	2.42E-08	2.428-08	2.3515-08	2.3516-08	2.49E-08
	æ	5.88	158	35.50	28.50	34.69	907	33.88	17.50	35.76	5.58	35.56	18.81	35.36	6.19	35.25	17.26	35.50	3.58	35.25	20.94	35.81	4.75	35.31	20.25	35.81	6.75	34.81	16.38	35.75	6.25	34.56	16.13
cumulative	hours	185.80	188.32	18950	102.88	193.52	209.72	209.75	217.68	217.73	233.57	233.60	241.95	241.98	257.80	257.83	266.32	266.33	262.72	282.75	289.52	289.57	306.10	306.12	313.62	313.83	328.88	328.90	337.93	337.95	353.02	353.03	361.63
anil line	appear our	65580	0780	4280	9711	3000	58320	120	28580	180	67000	120	30060	120	56220	120	31260	60	58980	120	24380	180	59520	90	27000	e e	24900	9	32520	2020	27570		31680
	1	BOR	6701	1200	1511	1801	A. S.	815	1181	1814	804	90	1827	1829	808	£ 00 £	1849	1850	500	918	1081	1801	808	33,4	1607	8081	723	767	1828	1627	73.1	10.	1620
	3	307		3 5	3 5	3 5				70	, j	90/1	90/	1 /92	90/1	80/1	90/1	90/11	20/11	19/11	2,4	10/11	10/11	11/00	11/08	20/11	90/11	80/11	60/11	80/11	80/11	01/11	11/10

TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE TWO DATA

TSB-2 STACE TWO

Geometric factor – G = 0.008459" Depth factor = 358.75" IV values from Replacement TEC-3

		comments	Refil		Refil	TST ON
		RPD (KI was)	70	20	X 0	70
		(C M)	2.48E-08	2.478-08	2.471-08	2.48E-08
	cumulative	volume (∞)	2181.79	2278.74	2278.74	2322.18
		Kact	2.72E-08	2.635-06	2.638-08	2.86E-08
		viec fector	1.1	1.1	1.1	1.1
		KIC	2.47E-08	2391-08	2391-08	2.808-08
		ដ	0.00	0.00	0.00	90.0
		Ø	2.49E-08	2398-08	2391-08	2.59E-08
		롡	35.94	5.81	35.00	21.50
camulative	elanged time	hours	361.85	376.98	377.00	363.13
	changed time	econde	80	54480	Ş	22080
		Time.	1821	735	738	1344
		3	11/10	17/11	11/11	11/11

END OF TEST TSB-2 STACK TWO

TRO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

Geometric factor – G = 0.006401" Depth factor = 162.25" IV values from TEC-1 TSB-3 STACE TWO

	Comments	START																							;	Refil						
,	RPD (KLvm)	¥	•	. 66%	29	Ķ	1X	X	X 0	×	24 24	X	X	1%	X 0	X	K	7	X	17	20	22	0%	2 0	2%	X 0	34	24	17	XI .	% 0	<u> </u>
	K (twa)	,	6.61E-09	3.54E-09	3.B7E-09	3.73E-09	3.78E-09	3.72E-09	3.73E-09	3.711-09	3.778-09	3.748-09	3.718-09	3.701-09	3.881-09	3.8711-09	3.571-09	3.52E-09	3541-09	3.538-09	3.5411-09	3598-09	3.601-09	3.61 E-09	3.671-09	3.67E-09	3.776-09	3.8512-09	3.89E-09	3.948-09	3.95E-09	3.99109
cumulative	volume (∞)	00:0	13.90	15.89	24.38	28.18	27.57	33.59	35.39	37.00	1121	46.05	47.48	53.89	55.92	5734	63.55	64.96	71.21	73.01	73.62	80.25	27.18	82.27	89.10	69.10	94.96	104.19	108.41	116.67	121.08	128.52
	מכז	,	6.61E-09	5.00E-10	4.29E-09	2.40E-09	4.48E-09	3.498-09	3.841-09	3.3512-09	4.12E-09	2.98E-09	2.93109	3.56E-09	3.37E-09	320E-09	2.81E-09	2.23E-09	3.78E-09	2.94E-09	4.39E-09	4.19E-09	4.44E-09	4.08E-09	4.33E-09	4.33E-09	6.588-09	5.05E-09	4.80E-09	4.78E-09	4.33E-09	4.59E-09
	viec factor	•	11	=======================================	12		- 1	77	7	11	12	12	1.1	1.1	1.1	1.1	1.1	1.1	1:1	12	12	12	12	12	1.2	1.2	1.2	1.2	12	12	1.2	1.25
	KIC	ı	6.01 E-09	4.558-10	3.581-09	2.181-09	4.07E-09	3.171-09	3.491-09	3.048-09	3.431-09	2.4BE-09	2.67E-09	3248-09	3.078-09	2.918-09	2.55E-09	2.02E-09	3.448-09	2.458-09	3.881-09	3.491-09	3.701-09	3.401-09	3.61E-09	3.61 E-09	5.4BE-09	4.21E-09	4.00E-09	3.985-09	3.61 E-09	3.67E-09
	멑	•	0.08	0.31	90.0	90.0	0.26	0.00	0.00	90.0	0.00	970	000	0.00	-0.12	0.00	-013	0.00	0.32	-0.04	0.13	0.12	0.00	0.32	0.18	0.00	0.07	0.00	0.12	90.0	-0.06	0.13
	Ŋ	1	5 92 11-09	01010	3501-09	2.451-09	2.601-09	3171-09	3.491-09	2.72E-09	3.43E-09	3.73E-09	2.87E-09	324E-09	3.79E-09	2911-09	2.74E-09	2.021-09	2.951-09	2.B0E-09	2.17E-09	3.30E-09	3.70E-09	1.49E-09	3.3318-09	3.33E-09	5.28E-09	4.21 E-09	3.66E-09	3.89E-09	3.76E-09	3.485-09
	룑	11 61	20.2	28.80	28.08	25.50	25.06	23.19	22.83	22.13	19.86	1031	18.88	16.88	1626	16.81	13.88	13.44	11.50	10.94	10.75	8.69	8.31	8.08	5.94	35.38	33.56	30.69	29.38	26.81	25.44	23.13
cumulative	hour	6	200	90 6	00.12	56.50	80.58	74.87	78.76	63.28	99.43	103.23	107.25	122.73	126.93	130.77	148.75	154.33	171.35	178.55	178.83	195.25	197.97	202.42	219.42	219.45	227.37	24322	251.62	267.28	275.98	292.07
-langed time	seconds			61500	64500	19800	14700	51420	14100	16200	56140	13680	14460	65740	15120	13800	64740	20100	61260	16720	8220	59100	9780	16020	61200	120	28500	57060	30240	56400	31320	57900
	Time	9			75.	1325	1730	747	1142	1612	821	1209	1610	739	1151	1641	940	1516	818	1328	1545	810	1053	1520	820	. 822	1617	808	1632	812	1654	628
	Dete	64, 63	10/26	10/61	10/01	10/28	10/28	10/20	10/29	10/20	10/30	10/30	10/30	10/31	10/31	10/31	10/11	10/11	11/02	11/02	11/02	11/03	11/03	11/03	11/04	11/04	10/11	11/05	11/05	11/06	11/06	11/02

•

1

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-3 STACK TWO Geometric factor – G = 0.006401" Depth factor = 162.25" IV values from TBC-1

	Comments													
	RPD (KI ma)		17	17	7.6	ţ	20	XI	20	:	4	×	20	;
		1	3.965-09	3.0915-09	3071700		3932-09	3001-00	3.80E-09		372	3.511-09	2 ROLLOD	
cumulative	(w) earline	1	131.73	138.97	11011	146.01	148.43	151.84	167.47		160.59	16294	44.44	21001
		1	3.071-09	4.538-09	200	12/8-08	3.B2E-09	2931-09	2885-00	2000	2.201-09	2.948-09	00-430 6	1000 P
	to feel or	VIEW, IGEORY	12	1.25	:	71	12	12	-	1	-	T I	-	7
	2	נ	2.558-09	3.63.5		1,066-09	3181-09	2.448-09	00 410	2002	2.001-09	2.87E-09	00 000	80-38G2
	į	۲	979	4		190	0.13	9		0.00	931	80.0		9
	•	2	3.418-09	3247.00	2000	3.751-09	2971-09	2071-00		2.30E-09	2,901-09	2.78E-09		2.B4E-09
	i	£	22.13	900	OCAT	16.75	10.81	1 4 4 4	0001	14.13	13.13	1 60		10.01
cumulative	carbaca marc	ponu	2000		310.70	323.25	338 KK	2444	24.00	362.70	371.57	A4 7K		393.08
4.000		Beconda	DK800	2000	09460	27000	20.00		32400	24400	31020	2247	20010	22800
			9	anor .	840	0181	200	9	1629	737	1820		2	1400
		ž		11/01	11/08	11 /0A	00/11	80/11 (0)	11/08	11/10		71/11	11/11	11/11

END OF TEST ISB-3 STACE IND

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-4 STAGE TWO
Geometric factor - G = 0.006514"
Depth factor = 239.25"
IC values from TEG-2

Comments	START										i														;						
RPD (KI vm)	ı	•	11	¥	K K	27	X X	%	14	6	X :	X 0	K :	K .	20	¥ 0	X	20	X	K .	20	0%	X 1	20	0%	۲ 0	2%	1%	20	12	X 0
K (t m)	1	4.57E-09	4.82E-09	4.51E-09	4.88E-09	4.78E-09	4.79E-09	4.81E-09	4.84E-09	4.53E-09	4 BOE-09	4.80E-09	4.59E-09	5.03K-09	6.05E-09	5.07E-09	5.07E-09	5.07E-09	5.05E-09	5.05E-09	5.04E-09	5.05E-09	5.05E-09	5.0516-09	6.03E-09	5.03E-09	5.118-09	5.188-09	5.20E-09	5.23E-09	5.24E-09
cumulative volume (cc)	0.00	13.45	18.69	33.56	38.61	41.41	53.09	56.31	59.72	71.98	75.00	76.00	79.83	95.53						140.96	142.18	155.05		_	_	_	_	_	206.92	••	••
אַכּד	1	4.57E-09	4.761-09	5.058-09	5.43E-09	3.83E-09	4.83E-09	6.10 L-09	6.30E-09	4.768-00	4.07E-09	4.07E-09	80-2669	5.878-09	5.81E-09	6.88E-09	5.118-09	5.08E-09	60-306°	60-386'7	4.48E-09	5.10E-09	6.27E-09	5.12E-09	4.80E-09	4.80E-09	7.25E-09	6.06E-09	5.808-09	5.78E-09	5.35E-09
visc factor	ı	ΓŢ	1.1	17	: =	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	-
KIC	i	4.15E-09	4.331-09	4 598-09	4.93E-09	3.308-09	4.39E-09	4.638-09	4.B2E-09	4.351-09	3.701-09	3.708-09	8.38E-09	5.33E-09	5.10E-09	6.16E-09	4.65E-09	4.82E-09	4.46E-09	4.53E-09	4.06E-09	4.63E-09	4.79E-09	4.65E-09	4.36E-09	4.36E-09	6.598-09	5.51E-09	5.271-09	5.251-09	4.86E-09
ង	ı	-0.25	<u> </u>	900	7 00	-0.12	610	0.00	0.13	00.0	91.0	0.00	0.00	90.0	61.0	0.00	91.0	70.0	0.25	-0.07	0.13	0.12	0.00	0.25	0.00	0.00	0.07	000	90.0	0.06	90.0-
ט	•	4 428-00	4718-00	00 ET 1.1.	5.06E-09	3.838-09	4.55E-09	4.638-09	4.291-09	4.351-09	4.63E-09	4.83E-09	6.36.2-09	5.40E-09	5.64E-09	5.16E-09	4.831-09	4.391-09	4.191-09	4.778-09	3.02E-09	4.50E-09	4.79E-09	3.611-09	4.365-09	4.36E-09	6.448-09	5.51.6-09	5.15E-09	5.18E-09	4.99E-09
룑	5	20.10	26.26	3040	10.04	18.19	1456	1358	12.50	979	7.76	32.63	31.13	28.25	24.88	23.76	18.81	17.44	13.50	12.13	11.75	7.76	7.08	6.19	2.25	35.75	32.75	27.63	25.13	20.50	18.06
cumulative elapsed time hours	6	3.5	1022	25.52	45.80	40.85	40 E	67.90	72.40	68.52	9228	92.32	96.32	111.82	116.03	119.85	137.86	143.45	180.42	165.65	167.95	164.37	187.05	191.55	208.60	208.65	216.48	232.33	24073	256.40	265.10
clapsed time	•		00790	00912	04300	14590	14000	14100	16200	58020	13560	120	14400	55800	15180	13740	64920	20040	A10A0	18840	RZRO	59100	9660	16200	61380	9	28200	57080	30240	2222	31320
Time	1	1549	209	1402	202	1361	1/50	2 5		820	1206	1208	1808	738	131	1540	270	7 E	710	1328	1546	A11	1052	1522	1056 1056	828	8191	000	E 6 9 9	201	1655
Date	4	10/28	72/01	10/2/	10/28	07/01	92/01	10/28	10/20	10/30 10/30	10/20	05/01	02/01	26/01 10/01	10/01	[] []	[6/6] [6/6]	10/11	10/11	20/11	20/11	30/11	11/03	60/11	3/11	70/11	0/11	10/11	20/11	50/11	11/08

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-4 STACE TWO Geometric factor – G = 0.006514" Depth factor = 239.25" IC values from IBG-2

		Comments															
	•	RPD (RIME)	20		×	8	20		X 0	1 4	20	X 0	*	\$	K 0	2	\$
		K (Lm)	F 24 F-00	20-12-0	523E-09	523E-09	E 27 P AG		6.25 K-09	5.305-09	5311-09	5.331-00	00 200 2	0.326-08	531E-09	C 21 F. AO	100
	COMMONTAGE	volume (cc)	13 F16	17013	249.55	262.65	20.000	707	272.69	289.20	298.85	31291	1000	35070	333.44	70.00	220.00
		מכל	R 24P_00	20.416.70	5.04E-09	5.09E-09		20.08 20.08	6.291-09	6.20E-09	5.93109	5 A5 E-00		AO-TOF-OR	5.06E-09		P.121.0
		viec fector	-	=	1.1	1.1	:		Ξ.	1.1	1.1	! =	: :	1.1	1.1	•	7
		XI C	00 404 7	4.70E-08	4.568-09	4.63E-09	00	40-35q	5.72E-09	5.841-09	5.30E-09	277	00 4 TO	4.63E-09	4.50E-09		4.86E-09
		ដ	•	50.0	0.04	200		0.00	190	-0.07	9		000	6 <u>7</u> .9	000	}	0.00
		×		4.838-09	4.78E-09	4.55.5-09		4.55E-09	7.001-09	5 728-09	5 A 1 1 - 0 0	00 000	074E-08	6.02E-09	4 801-00		60-199°
		æ	! !	13.76	11.88	7.81	1	36.00	32.88	27.7E	3 7 6	10.42	20.35	17.86	2	20.1	1238
cumulative	changed time	a contract		281.18	288.35	20187	7	304.88	312.37	327.67		236.00	39198	380.88	975.87		362.20
	plantary lime	a compa		57900	25800		00480	S	28040		99769	32480	24480	31920	2007	00010	22800
		2		008	181	276	110	842	181	727	A .	1630	736	1830		1	1401
		5		1/07	· (4)		1/20	1/08	90/-	00/1	3 0/1	60/I	1/10	4.71	21/1	1/11	1/11

END OF TEST ISB-4 STACE I'M

THO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE THO DATA

TSB-5 STAGE TWO Geometric factor - G = 0.006576" Depth factor = 153.5" IC values from IEG-1

	Comments	į	PIAK																														
	RPD (K1 vm)		t ,		31%	500	10%	¥	X.	ĸ	×	ĸ	22	27	2%	X	1%	X	1%	22	X 0	27	22	14	2%	6%	1%	12	<u> </u>	20	. 2%	7.	2%
	K (twa)			4.93E-09	3.51E-09	1.378-09	1.138-09	1.096-00	1.028-09	1.011-09	9.95E-10	1.001-09	9.83E-10	9.85E-10	9.85E-10	9.72E-10	9.65E-10	952 E- 10	9.39E-10	0.87E-10	9.91 E-10	1.01E-09	1.071-09	1.078-09	1.09E-09	1.158-09	1.16E-09	1.18E-09	1.19E-09	1.19E-09	1.218-09	1228-09	1.24E-09
cumulative	volume (cc)	- ;	0.00	5.05	5.37	87.0	70.6	927	12.67	13.90	14.90	1831	20.53	21.33	26.16	27.35	28.15	33.21	34.20	39.84	41.25	42.25	1826	(828	60.29	5734	59.75	65.16	67.18	64.99	73.62	76.64	99.18
	K		ı	4.9315-09	1.482-09	7.52E-10	2.53E-10	834E-10	B.71E-10	8.52E-10	6.71E-10	1.0211-09	821E-10	8.84E-10	1.088-09	8.92E-10	7.80E-10	8.82E-10	6.56E-10	133E-09	1.12E-09	2.261-09	1.578-09	1.42E-09	1.83E-09	1.798-09	1.315-09	1.37E-09	1.5516-09	1.598-09	1.556-09	1.43E-09	1.55E-09
	viec factor		T	T	1.1	12	=		1.1	11		12	12	1.1	1.1	11	1.1	1.1	1.1	1.1	12	12	12	12	12	12	12	1.2	1.2	12	1.2	12	1.25
	KIC		ı	4.48E-09	1338-09	627E-10	230 L- 10	7.58E-10	792E-10	7.75E-10	7.92E-10	B.53E-10	5.17E-10	6.04E-10	9.83E-10	6.29E-10	6.908-10	8.02E-10	5.96E-10	1.21E-09	929E-10	1.88E-09	1.30E-09	1.18E-09	1.53E-09	1.491-09	1.09 E-09	1.14E-09	1.291-09	1.336-09	1291-09	1.19E-09	1.24E-09
	ដ		ı	031	0.13	90.0	90.0	0.25	0.00	0.00	90.0	0.00	0.19	0.00	0.00	-0.12	0.00	613	0.00	0.32	-0.0 7	0.13	0.12	0.00	0.32	0.18	0.07	0.00	00.0	0.12	90.0	0.00	0.13
	Ŋ		•	1.42E-08	1.47E-09	1.50E-09	8.55E-10	3.72E-10	2.01 E-09	1.978-09	1.891-09	2.171-09	2.63E-09	1.53E-09	2.50E-09	2.37E-09	1.75E-09	2.22E-09	1.51E-09	2.59E-09	2.751-09	3.37E-09	3.116-09	3.01 E-09	1.91E-09	3.508-09	2.54E-09	2.89E-09	3.298-09	2.27E-09	3.17E-09	3.0316-09	2.91E-09
	뵨		33.BB	32.31	32.21	31.25	31.06	31.00	29.86	29.58	29.25	27.88	27.50	27.26	26.76	25.38	25.13	23.58	23.26	21.56	21.06	20.75	16.88	18.58	18.25	16.06	16,31	13.63	13.00	12.75	11.00	10.06	8.50
cumulative elapsed time	hours		0.00	2.75	4.45	20.50	26.08	\$073	44.18	1830	62.97	60.08	72.78	76.97	92.45	96.50	10020	118.83	124.00	141.22	148.05	14850	16458	167.45	171.83	18887	196.97	. 213.02	21835	221.42	236.90	245.87	260.97
chped time	seconds		0	0088	6120	57780	20100	14580	60580	14620	16800	58020	13320	15060	55740	14580	13320	66360	19320	08619	17400	8820	67900	10320	15780	61320	29160	57780	19200	11040	55740	31560	55080
	Time		1140	1452	1607	810	1346	1748	761	1158	1638	846	1227	1638	807	1210	1552	1018	1540	653	1343	1610	815	1107	1530	832	1638	836	1356	1700	829	1715	633
	Dale		10/27	10/27	10/27	10/28	10/28	10/28	10/29	10/29	10/29	10/30	10/30	10/30	10/31	16/01	10/31	10/11	10/11	11/02	11/02	11/02	11/03	11/03	11/03	11/04	11/04	11/02	11/05	11/05	11/06	11/08	11/07

TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE TWO DATA

TSB-5 STACE TWO
Coometric factor - G = 0.006576"
Depth factor = 153.5"
TC values from TEG-1

Comments			Recil							END TEST
RPD (KLwa)	1%	2%	20	0 0	22	80	20	17	24	z
K (t m)	123E-09	1268-09	1268-09	1261-09	1285-09	1278-09	1.28E-09	1298-09	1318-09	1341-09
cumulative volume (ac)	8427	80.08	80.08	94.92	10154	10498	110.39	11522	123.07	127.90
5	9.908-10	1.661-09	1.681-09	1138-09	1.858-09	1.191-09	1.381-09	1.621-09	1.86E-09	3.051-09
viec factor	12	1.25	1.25	12	12	12	12	12	7	12
KIC	8.25E-10	1348-09	1348-09	9.418-10	1.371.	9 R9K-10	1.151-09	1.3511-09	1.551-09	2.541-09
٤	-0.25	910	000	9	0 13	9	90	3 5	9	90.0
5	1031-00	3 101-09	3 101-09	5.21E-00	2001100	200200	00.000	00-2007	4 051-09	6.72E-09
2	7 60	2 2	35.50 67.50	2 6	2 2	40.00	00000	27.47	25.25	23.75
comulative	1000 C	20003	20000	2000	00.082	30830	31020	332.00		36232
elapsed time	Becond	27600	00809	92.20	20060	08280	31280	54380	31920	20040
i	Jue :	1813	908	806	1815	763	1634	140	1632	806 1354
	Pale :	11/07	11/08	11/08	11/08	60/11	11/00	01/11	11/10	11/11

END OF TEST ISB-6 STACE TWO

TWO-STACE BOREIOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-6 STAGE TWO
Geometric factor - G = 0.006190"
Depth factor=231.5"
IV values from IBG-2

Comments	START					į	3					1			į	Ker				Refi		į	Kati							2		
RPD (KLms)		1	311		vo i	2 .	X ;	X 0	K .	X :	Z :	K :	71	ZI.	XI :	X 0	K :	¥1	K :	20	%	ΣI :	55%	X !	71	0%	2%	80	0%	0%	2%	
K (1.m)	1	2.558-08	9048-08	00 200	1316-00	1.512-08	1.811.08	1.501-08	1.75E-08	1.738-08	1.721-05	1.721-08	1.701-08	1.68E-08	1.878-08	1.871-08	1.658-06	1.848-08	1.631-08	1.632-08	1.605-08	1.801-08	9.116-09	9.47E-09	9.538-09	9.568-09	8.74E-09	9.77E-09	9.B0E-09	9.801-09	1.00E-08	
cumulative volume (cc)																					325.24											
אנק	ı	2 KKE-OR		00-2001	1.826-06	1.46E-08	1.461-08	1.748-08	1.631-06	1591-08	1.561-08	1.56E-08	1.851-08	1348-08	1386-08	139E-08	1.57E-08	1381-08	1.41E-08	1.415-08	1.47E-08	1.40E-08	1.415-08	1.406-08	1225-08	127E-08	1245-08	1.21 E-08	1.195-08	1.191-08	1.385-08	
viec. fector	11	! =	1:	. ;	-	11	1.1	11	11	11	-	11	1.1	11	11	11	1.1	11	11	П	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1		1.1		
KIC	1	2 22 E_0A	00-2252	1.71 5-08	1.851-08	1.33E-08	1331-08	1.59K-08	1.491-08	1.441-08	1.42E-08	1.42E-08	1.50E-08	1225-08	1.26E-08	1.26E-08	1.438-08	1.28E-08	1285-08	1285-08	1.335-08	1.26E-08	1285-08	1.288-08	1.116-08	1.16E-08	1.131-08	1.105-08	1.08E-08	1.085-08	1.26E-06	
ដ		:	?	0.13	90.0	90.0	0.00	-0.12	613	0.00	0.13	0.00	0.00	-0.19	0.00	0.00	90.0	0.13	0.00	0.00	-0.19	0.07	00.0	0.25	-0.07	0.13	0.12	0.00	0.25	000	0.00	
. 2	ĺ	90	2.411-06	1.57E-08	1.8512-08	1351-08	1.351-08	1.648-08	1501-08	1.448-08	137E-08	1.37E-08	1.50E-08	1315-08	1.28E-08	1.26E-08	1.43E-08	1311-08	1.285-08	1288-08	1.35E-08	1.25E-08	1.25E-08	1.258-08	1.14E-08	1.06E-08	1.125-08	1.105-08	9.76E-09	9.761-09	1.261-08	
룑	6	20.00	97.62	27.76	12.50	831	33.63	29.76	17.38	14.00	10.44	34.25	20.00	1726	1426	34.83	2150	18.44	15.75	35.00	2031	16.44	34.56	21.81	18.63	17.13	7.13	279	3.13	13.60	21.00	!
cumulative clapsed time hours	6	0.00	233	3.93	20.02	25.84	25.71	29.84	43.74	47.87	6254	62.57	88.84	72.31	78.52	76.81	92.01	96.06	99.76	99.82	118.16	123.58	216.50	233.63	238.48	24095	257.02	259 A5	26423	BC 78C	281.30	
elapsed time seconds	•	5	9100	5760	57924	20220	240	14160	50780	14880	16600	120	67840	13200	15180	300	55440	14580	13320	076	66000	19440	240	61680	17460	AAAO	57840	10200	15780	0491	61260	•
Time		1210	1430	1606	608	1348	1350	1748	752	1200	1840	1842	848	1228	1839	1811	808	151	1553	1557	1017	1541	1545	N53	7761	1619	916	901	1530	6641	1336 833	2
Date	;	10/27	10/27	10/27	10/28	10/28	10/28	10/28	02/01	10/29	10/29	10/20	10/30	02/01	10/20	08/01	25/01	10/01	15/01	76/01	10/01	10/11	[11/02	11/02	70/11	20/11	200	20/11	20/11	20/11	11/11

TWO-STAGE BOREHOLE FIELD PERMEABULTY TEST STAGE TWO DATA

ISB-8 STAGE TWO Geometric factor $-G = 0.008190$ "	Depth factor=231.5"	TC values from TEG-2
--	---------------------	----------------------

	Comments			2					P. P						물				!	팋					ISIL ON	
	PPD (KLwa)	14	5	\$ }	27	0%	80	17	20	71		۲1	X	1%	X 0	80	-	<u> </u>	20	X 0	7.	: :	20	×	70	:
	K (twa)	1.011-08		1.016-00	1.03E-05	1.031-08	1.031-08	1.041-06	1.041.08	1.0512-08		1.056-05	1.061-05	1.067-06	1.061-06	1.078-08	80.20	1.0.1.	1.0515-05	1.081-08	1 ORE-OR	20 800.1	1.0915-08	1.091-08	1 005-08	7.00 T
cumulative	volume (cc)	498.35		486.35	532.74	643.81	549.83	580.01	580.01	AC 108	100	633.71	84838	660.37	680.37	R0704		130.05	748.13	74613	789 79	3	801.03	830.37	96119	04140
		1.25.6-08		1.25.6-08	1.318-08	1231-08	1221-06	1.201-08	1 20 E-08	90226	00-2101	1238-08	1.148-08	1.161-08	1.188-08	AC. TOT	00 840	1256-05	1.1716-08	1.178-08	80		1.181-08	1.158-08	60	1.162-00
	vier factor	=	: :		1.1	1.1	1.1	=	! =	! :	77	7	11	1.1	Ξ	: :	1:	1.1	T	-	: :	T:T	1.1	1.1	•	7
	S IX	1118-08	77.1	1.148-08	1.19108	1.128-08	1.118-08	1 005-08	BO 100 1	00 810.1	20-3c7 I	1.12E-08	1.031-08	1.078-08	1078-08		1.00	1146-08	1.0612-08	I DAR-DA	20 200.1	1.19E-05	1.07E-08	1.051-08		1.05 K-05
	Ę	2 2	5	000	00.0	000	900	80		3.5	90.0	90.0	-0.07	0.07		3 6	P	0.07	613	6		00.0	0.19	000		0.00
	Ä	90 401	175570	1.12E-08	1.19E-08	1 12R-08	1048-08		00 200.1	90-1901	1261-06	1.131-08	1.0512-08	1 07E-08	BO 1101	00 4107	1215-05	1151-08	1.098-08	80-2001	1.08 E	1.1916-08	1.118-08	1.058-08	200	1.05E-08
	Z	2 :	1001	3425	22.94	1050	1783	3 6	070	34.00	28.25	18.19	13.63	3.60		10.50	29.53	19.13	13.75	94.0	TOO	24.44	18.75	640	5	625
cumulative	carbaca mire	E COURT	289.40	289.45	305.38	310,70	210.10	21.0.10	358.20	32028	336.02	353.32	AGORE	97703	200	27.7.70	38202	400.85	EE 607	2600	1 C 804	121.13	433.30	08 877		164.87
	empaed ume	BECODUR	29160	180	67380		04161	02801	09990	120	31440	KEORO	37600	0001	02010	09	25440	56250	11280	0010	120	54240	91000		20000	21120
	ı	in in	1639	1842	ACA	000	2001	1658	830	632	1716	768	7,00	• 101 • 101	118	216	1616	754	26.01	CCOT	1637	741	1693	Col	803	1355
		Date	11/04	70/11	10/11	50/11	30/11	co/11	11/08	11/08	11/08	10/11	20/11	70/11	11/08	11/08	11/08	11 /00	20/11	NO/II	11/08	11/10	07/11	01/11	11/11	11/11

END OF TEST ISB-6 STACE TWO

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

TSB-7 STACE TWO

Coonstric factor - G = 0.006634"

Depth factor = 161.25"

TC values from TEG-1

Comments	START										•	Repeated value																				
RPD (KLwa)	s'	•	24	207		¥01	722	17	24 24	X :	17	X (74 73	8	×	7	K i	X	20	X	27	24	<u> </u>	8 E	57	17	27	17	12	7	12	3%
K (1 m)	1	2.768-09	2 808-00	4 7 1 1 00		1.00 E-00	1241-09	1231-09	1201-09	1211-09	1221-00	1221-09	1201-09	1201-09	1198-09	1.188-09	1.141-09	1145-09	1248-09	1221-09	1258-09	1.328-09	1338-09	1.378-09	1.448-09	1.4616-09	1.48E-09	1.496-09	1.518-09	1.536-09	1.546-09	1.588-09
cumulative volume (∞)	000	222	.176		2	5.44	6.02	8.04	6.43	90'6	11.26	11.87	1228	14.48	1628	15.87	18.06	16.89	2153	22.10	22.52	25.55	26.13	26.55	29.96	31.37	34.40	35.39	36.00	38.80	40.61	13.63
KLCT	ı	60-177 6	2 00 E-00	00 00 00	80-25CT	9.31E-10	7.17E-10	1.191-09	7.B1E-10	1.42E-09	1258-09	1.261-09	7.99E-10	1.20E-09	8.52E-10	9.00E-10	9.12E-10	9.52E-10	2.24E-09	6.75E-10	3.048-09	1.97E-09	1.94E-09	3.12E-09	2.17E-09	1.89E-09	1.79E-09	1.81 E-09	3.138-09	1.82E-09	1.788-09	2.22E-09
viec fector	=	: -	; :	: :	7	1:1	11	1.1	1.1	1.1	12	12	1.1	11	1.1	1.1	1.1	1.1	1.1	12	1.2	1.2	1.2	1.2	1.2	12	12	12	1.2	12	1.2	1.25
KIC	•	9998-00		2.03E-08	1758-08	8.46E-10	8.52E-10	1.088-09	7.101-10	1298-09	1.051-09	1.051-09	726E-10	1.091-09	7.74E-10	6.16E-10	829E-10	8.65E-10	2.048-09	5.82E-10	2.53E-09	1.64E-09	1.612-09	2.60E-09	1.B1E-09	1.58E-09	1.49E-09	1515-09	2.618-09	1.518-09	1.49E-09	1.788-09
72			100	FTO	0.06	90. 9	0.25	0.00	0.00	90.0	0.00	0.19	0.00	0.00	-0.12	0.00	-013	0.00	0.32	-0.07	0.13	0.12	0.00	0.32	0.18	0.07	00.0	000	0.12	0.06	90.0	0.13
코	1	00	4.04E-08	8.32E-10	1.0315-09	1.11E-09	2.73E-10	1.081-09	7.101-10	9.78E-10	1.051-09	1.26E-09	7.26E-10	1.09E-09	1.49E-09	8.18E-10	1.00E-09	8.85E-10	1.49E-09	920E-10	1.27E-09	1.48E-09	1.61E-09	7.50E-10	1.558-09	1.361-09	1.498-09	1.518-09	1.60.09	1.425-09	1.66E-09	1.568-09
荰		24.50	33.00	33.50	32.81	32.58	32.38	31.76	31.63	31.44	30.75	30.53	30.44	29.75	29.50	29.38	28.83	28.44	27.58	27.38	27.25	26.31	26.13	26.00	24.94	24.50	23.56	23.25	23.06	22.19	21.63	20.69
cumulative elapsed time hours		0.00	3.63	5.38	21.53	26.95	42.90	56.98	61.08	65.80	81.86	85.55	89.59	105.09	10920	112.80	131.20	136.62	151.20	168.05	158.80	174.87	177.45	181.79	198.95	207.10	223.05	228.27	231.29	246.94	255.54	270.97
rlapsed time seconds		9	14760	8240	68200	19500	67420	20700	14780	16960	57840	13284	14520	55800	14820	12960	86240	19500	52500	17460	0810	57840	10020	15600	61800	29340	27750	18780	10860	56340	30960	55560
Time		1015	1421	1605	816	1340	1761	758	1202	1645	840	1230	1832	802	1200	1546	6001	1534	850	1341	1814	A1A	1105	1525	835	184	178	1361	1001	0001	171	836
Date		10/27	10/27	10/27	10/28	10/28	10/28	10/29	10 /20	10/20	10/30	02/01	08/01	26/01	10/01	7 7 7		\ : :	1 /02	11/02	11/02	11 /03	11/03	11/03		5	10/11	20/11	co/11	60/11	00/11	11/07

TWO-STACE BOREHOLE FIELD PERMEABULTY TEST STACE TWO DATA

TSB-7 STAGE TWO
Geometric factor - G = 0.006634"
Depth factor = 161.25"
TC values from TEG-1

Comments	END TEST
RPD (KLum) 1 X 3 X 0 X 1 X 1 X 1 X 1 X	K K
K((m) 156E-09 150E-09 150E-09 150E-09 151E-09	1.58E-09
cumulative volume (cc) 45.05 49.48 49.87 52.48 53.89 56.50 58.50	60.52 61.75
KICT 7.84E-10 2.39E-09 1.58E-09 1.90E-09 1.82E-09 1.82E-09	1.30E-09 1.89E-09
vinc. fector 1.2 1.25 1.25 1.2 1.2 1.2 1.2 1.2 1.2	12
KIC 6.37E-10 1.92E-09 1.32E-09 7.37E-10 1.51E-09	1.09E-09 1.41E-09
77 -0.25 0.18 -0.81 0.13 -0.19	0.00 80.00
KI 1.48E-09 1.54E-09 1.57E-09 1.36E-09 1.41E-09	1.19E-09
R. 2025 19.19 16.75 17.94 17.50 16.59	15.44
cumulative clapsed time bours 278.85 295.40 302.89 318.15 327.02 342.10	36629
chapsed time 27660 60300 26220 55860 31920 54300	51560 55200 21720
Time 1617 902 1619 747 1639	1636 765 1367
Dete 11/07 11/08 11/08 11/09	2 1 1 1 1 1 1 1 1 1 1

END OF TEST TSB-7 STACE TWO

TWO-STAGE BORGHOLE FIELD PERMEABILITY TEST STAGE TWO DATA

TSB-6 STAGE TWO
Geometric factor - G = 0.006459"
Depth factor = 237.00"
IC values from Replacement IEG-2

Comments	START						2		Refi			E		Relia			<u> </u>		E		:	Z.	1	Refi		Refil		Refü			Refil
RPD (fl.ms)	1	•	М	X 0	¥	29	KO	8	X 0	K :	X	K 6	X.	X X	K ·	K :	X 0	27	7 0	X 0	K O	80	32	80	0%	9%	Z.	X 0	×	7 0	X
K (tms)	1	5.34E-05	5.33E-08	5.30E-08	5.07E-08	4.B0E-06	4.791-08	4.41E-08	4.418-08	4.40E-06	4.33E-08	4.33E-08	4.0412-08	4.041-08	3.981-08	3,961-08	3.961-08	3.595-08	3.891-08	3.901-08	3.89108	3.891-08	3.798-08	3.79E-08	3.805-08	3.8016-08	3.76E-08	3.76E-08	3.802-08	3.501-08	3.80E-08
cumulative volume (xx)		29.76	44.88	11223	150.45	171.37	171.37	264.83	264.83	265.01	31236	312.36	394.60	394.60	412.72	437.43	437.43	526.91	526.91	657.09	578.39	678.39	676.75	676.75	713.14	713.14	812.08	812.08	852.72	868.81	868.81
K	ı	5.34E-08	5.29E-08	5.29E-08	4.18E-08	3.0512-08	3.05E-08	3.57E-08	3581-08	4.338-08	3.541-08	3.54E-08	3.081-08	3.088-08	2.848-08	3.698-06	3.691-08	3.49E-08	3.49E-08	4.29E-08	3.511-08	3.51E-08	3.238-08	3.22E-08	4.01E-08	4.00E-08	3.538-08	3.538-08	4.92E-08	3.96E-08	3.96E-08
viec fector	ı	1.1	T	1.1	11	11	11	11	1.1	11	11	11	11	1.1	T.I	1.1	11	11	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1
МС	•	4.86E-08	4.81E-08	4.81E-08	3.B0E-08	2.77E-08	2.778-08	3258-08	3.251-08	3948-08	3.22E-08	3.22E-08	2.B0E-08	2.801-08	2.58E-08	3.3512-08	3.3512-08	3.17E-08	3.17E-08	3.905-08	3.191-08	3.19E-08	2.93E-08	2.938-08	3.648-08	3.64E-08	3.21 E-08	3.21 E-08	4.47E-08	3.601-08	3.60E-08
គ	1	-0.13	0.13	0.00	-0.03 80.03	-0.12	0.00	613	0.00	0.00	0.13	0.00	0.00	0.00	61.0	0.00	0.00	90.0	00.0	0.13	0.00	0.00	61.0	0.00	0.07	0.00	0.25	00.0	-0.07	0.13	0.00
. 3	ı	4.93E-08	4.681-08	4.58E-08	3.81E-08	2.83E-06	2.83E-08	3261-08	3261-06	3945-08	3.17E-08	3.1711-08	2.B01-08	2.B0E-08	2.87E-08	3351-08	3.351-08	3.181-08	3.18E-08	3.958-08	3.195-08	3.191-06	2.95E-08	2.951-08	3.62E-08	3.62E-08	3.181-08	3.181-08	4.50E-08	3.505-08	3.50E-08
룑	34.88	25.83	21.00	30.89	18.81	1231	34.88	904	35.69	26.31	17.81	35.31	9.76	31.19	25.56	17.88	35.89	7.88	35.86	26.50	19.88	35.83	5.08	35.75	21.11	35.00	4.25	33.13	20.50	15.50	35.56
cumulative clapsed time hours		00.6	603	21.08	26.52	30.67	30.76	44.76	11.83	48.88	53.80	53.63	69.67	69.70	73.32	77.35	77.42	92.83	92.92	96.95	100.58	100.65	119.00	119.03	124.37	124.43	141.63	141.67	146.52	149.07	149.12
elapsed time seconds	c	11590	8240	58140	19560	14940	300	50400	300	14580	16960	120	67720	120	13020	14620	240	65500	300	14520	13080	240	66060	120	19200	240	61920	120	17480	9180	180
Time	-	1422	1608	7.5	1341	1750	1755	756	900	1203	1846	1648	850	952	1229	1631	1635	801	808	1208	1548	1550	101	1013	1533	1537	949	851	1342	1815	1616
Date	76/01	10/01	10/21	10/28	10/28	10/28	10/28	10/28	10/29	10/29	10/29	10/29	10/30	10/30	10/30	10/30	10/30	10/31	15/61	16/01	10/31	10/31	10/11	(7	10/11	11/02	11/02	11/02	11/02

TWO-STACE BORGHOLE FIELD PERMEABILITY TEST STACE TWO DATA

TSB-6 STAGE TWO

Geometric factor - G = 0.006459"

Depth factor = 237.00"

TC values from Replacement TBC-2

	Comments		Refil				Refi		Refil		E	;						Rel	;	Reci		E		Refil	;	R		E	-25" Reful		Refil		Refil
	RPD (KLwa)	0%	X 0	٥ <u>۲</u>	20	0%	0%	8	X 0	1%	0 0	0	6	%	X 0	7 0	70	20	X	X 0	۲ 0	0	80	0	0%	0%	1%	0%	22	1,7	0%	6	80
	K (tws)	3.818-08	3.81E-08	3.82E-08	3.82108	3.B3E-08	3.B3E-08	3.54E-06	3.5412-08	3.565-08	3.861-08	3.871-06	3.578-06	3.59E-08	3.59E-05	3.59E-08	3.568-08	3.88 L -08	3.901-08	300100	3911-08	3.911-08	3.921-06	3.92E-08	3.92E-06	3.928-08	3.95E-08	3.958-06	4.02E-08	4.04E-08	4.04E-08	4.04E-08	4.0416-08
en interior	volume (cc)	969.94	96994	991.05	1019.81	1023.83	1023.83	1131.20	1131.20	1191.95	1191.95	1295.30	1295.30	1338.13	1355.82	1355.82	1453.35	1453.35	151629	151629	1818.28	161626	1874.37	1674.37	1783.77	1783.77	1846.51	1846.51	1961.96	2033.94	2033.94	2134.30	213430
	10.00	3.B5E-08	3.858-08	4.458-08	4.06E-08	5.87E-08	5.87E-08	3,938-08	3.935-08	4.48E-08	4.47E-08	3,951,-08	3.95E-08	4.63E-08	3941-08	3.9412-08	3.791-08	3.BOE-08	4.35E-08	4.35E-08	4.018-08	4.02E-08	4.34E-08	4.33E-08	4.00E-08	3.995-08	5.19E-08	5.198-08	5.198-08	4.82E-08	4.82E-08	4.05E-08	4.05E-08
	vinc. factor	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1	1.1	1.1	T-1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		1.1	1.1		1.1	=
	KIC	3508-08	3.5016-08	4.04E-08	3.69E-08	5.34E-08	5.348-08	3.578-08	3.578-08	4.06E-08	4.08E-08	3.591-08	3.591-08	421E-08	3581-08	3581-08	3.45E-08	3.45E-08	3.958-08	3.958-08	3.658-08	3.85E-08	3.94E-08	3.948-08	3.63E-08	3.631-08	4.72E-08	4.72E-08	4.72E-08	4.38E-08	4.38E-08	3.685-08	3.685-08
	F	0.12	00.0	00.0	0.25	0.25	0.00	0.00	0.00	0.07	0.00	0.00	00.0	0.00	90.0	000	90.0	0.00	000	0.00	90.0	00.0	90.0	000	0.07	0.00	0.12	000	000	6.13	0.00	000	0.00
	12	3.49108	3.491-08	4.048-08	3.59E-08	4.45E-08	4.45E-08	3.57E-08	3.57E-08	4.04E-08	4.041-08	3.591-08	3.59E-08	421E-08	3.5416-08	3.541-08	3.44E-0B	3.44E-08	3.951-08	3.958-08	3.658-08	3.651-08	3.931-08	3.931-08	3.635-08	3.635-08	4.698-08	4.69E-08	4.69E-08	4.41E-08	4.41E-08	3.585-08	3.68E-08
	8		35.25	28.89	19.75	1850	38.00	2.63	35.88	17.00	36.76	3.63	35.50	22.81	18.89	35.31	200	35.75	16.19	35.88	4.19	35.75	1831	36.00	2.00	34.38	14.88	35.88	35.81	13.44	35.38	617	35.88
camulative	enped ume	185.13	165.15	167.90	172.25	172.76	172.77	189.42	189.48	197.57	197.58	213.48	213.52	216.88	221.75	221.77	237.40	237.43	248.02	246.03	261.43	261.45	269.12	269.15	265.87	285.88	293.13	293.15	308.63	317.46	317.50	332.57	332.58
:	empeed ume	57880	200	0088	15880	1000	09	59940	240	29100	90	57240	120	18600	11040	80	56280	120	30900	90	55440	90	27800	120	80180	69	28100	80	65740	31860	90	27370	60
	ě	- T	8 00	1105	1526	1558	1667	838	840	1645	1646	840	842	1352	1656	1857	835	937	1712	1713	R37	838	1818	1620	£06	700	1819	1620	6721	C# - 1	1841	715	746
		2 C	3 5	60/1	(S)	20/1	1,03	10/1	10/1	1/01	70/	1 /05	705	1 /05	1/06	1/05	- S	1/08	1/08	1 /08	70/1	20/1	70/1	1 /07	, vo	e 0/ - 1	00/11	20/11	00/11	00/11	11 /00		01/11

TWO-STACE BORGHOLE FIELD PERMEABILITY TEST STACE TWO DATA

TSB-8 STACE TWO

Geometric factor – G = 0.006459" Depth factor = 237.00" TC values from Replacement TEC-2

Commente	E	e E	2	TST ON	
RPD (KLvm)	8	K 16	5 8	XO	
K (ta)	4.045-08	90-1101	4.031-08	4031-08	
cumulative volume (xc)	2196.05	2196.05	2291.16	9331 10	
K	4.10E-08	90-2607	3.755-08	2010	
viec fector	1.1		= =		
S	3.72E-08	3.72E-08	3.418-08	3.41 5-00	3005
멑	9.10	0.00	000	0.0	0.00
5	3.76E-08	3.761-08	3.412-08	3.418-08	3.55 E-08
ă	16.89	35.81	6.26	34.94	2250
cumulative	341.42	341.43	356.75	356.77	362.78
elapsed time	31800	09	65140	80	21660
1	Time	1637	758	757	1358
,	Date - Vis	0/10	1/11	1/11	1/11

END OF TEST ISB-8 STACE TWO

TWO-STACE BOREHOLE FIELD PERMEABULTY TEST STACE TWO DATA

TSB-9 STAGE TWO
Geometric factor - G = 0.006699"
Depth factor = 160.00"
TC values from Replacement TEG-1

	Comments	START						1	Dry reful			D7 ref	7. 1.0	27 rd	P7 re		Dry refil	97 rd	Dr re(ii		R-CEI		Dry reful		<u> </u>		Refil	Dry refill	Dry refill	•	§ 1		Urry resu	
	RPD (K1 ms)	1	2002	347	<u> </u>	X	147	¥2	76%	72	37	2%	7	1%	7	2%	20	0X	1%	6 %	70	8%	21%	3%	X 0	22	0%	11%	3%	6	\$ 6	۲ . د	7 0	¥0
	K (tws)	•	201F-0R	2087-08	90 800	1.92E-00	1.676-06	1.54108	7.438-07	7312-07	7.12E-07	7.DOE-07	6.92E-07	6.88E-07	8.51E-07	6.86E-07	6.86E-07	6.63E-07	6.718-07	6.34E-07	6.34E-07	5.96E-07	4.84E-07	4.69E-07	4.69E-07	4.58E-07	4.56E-07	70-3117	4011-07	10.8.07	10.1E-0.	4.01 E-07	4.03E-07	4.028-07
cumulative	volume (oc)	c	97.00		3700	76.53	96.53	97.33	100.55	145.60	213.07	325.78	429.55	634.03	642.72	758.94	869.58	979.57	1092.99	1174.42	1174.42	1256.47	1289.06	1376.32	1376.32	1451.35	1451.35	1563.07	1675 30	20001	1700.71	1763.18	1886.34	1890.55
	אוכן	1	30.00	00-354.7	00-7007	1.666-06	1.06E-06	6.001-07	6.01E-07	6.395-07	6.38E-07	6.96E-07	6.38E-07	6.381-07	6.38E-07	8.38E-07	6.38E-07	8.38E-07	8.9811-07	2.091-07	2.098-07	3.52E-08	3.528-08	1.885-07	1 R7E-07	1 981-07	1 96 1-07	1005.07	12061	10-305.1	4.05 2-07	4.05E-07	4.42E-07	222E-07
	visc factor	Ξ	1 :	: :	1:1	-	1.1	Γ.	1.1	1.1	1.1	12	1.1	1.1	1.1	11	7.7	1	27	-	2	! -	: :	: =	: =	: -	: :	7.7	: :	:	1.1	1.1	12	1.2
	KIC	1		2.885.05	1516-06	1.51E-06	9.82E-07	5.48E-07	5.46E-07	5.80E-07	5.B0E-07	5.80E-07	5.80E-07	5.80E-07	5.80E-07	5.808-07	5.80E-07	5.80E-07	5 BOE-07	1718-07	1748-07	9000	305.0	1 708-07	70807	70507.1	1,105-01	10-297.1	1.788-07	4.97E-09	3.68E-07	3.685-07	3.688-07	1.858-07
	뇓		. ;	90.0	90.0	90.0	90.0	90.0	00.0	-0.13	000	000	000	000	000	000	0			3				3 5	3 6	9 6	000	000	0.00	0.00	0.00	00.0	000	-0.05
	IJ			2.64E-08	1.50E-08	1.508-08	9.51E-07	4.401-07	4.401-07	5.B6E-07	5 A&E-07	5.88E-07	5.86E-07	5.88.E-07	5.88107	S. BRE-07	F ARE-07	5 86 F-07	0.0000	0.000.0	1.000-01	10-2011	3215-06	3418-00	20 21.1	1.716-07	1.025-04	1.786-07	1.788-07	1.78E-07	3.68E-07	3.681-07	3.68.8-07	1.938-07
	産	;	31.26	22.56	13.13	6.75	126	001	35.25	21.25	37.76	30.0F	30.75	33.5	35 E	35.00	975	8 T 3 G	2700	20.05	802	20.02	10.13	33.50	00.0	34.35	90.11	35.00	34.63	33.50	25.63	32.06	33.50	32.19
cumulative	hours	;	0.00	90.0	0.25	0.42	0.56	080	4.37	707		22 43	95.87		00 CF	00.30		97.09	9070	70.75	56.33	29.00	6231	77.53	86.10	82.11	65.49	85.51	104:01	10954	110.08	126.61	13188	132.04
	espect time		0	300	600	909	009	5	19580	2180	0017	000	09770	12060	000	00001	00220	00821	18200	58320	13500	300	14016	55860	12000	150	12180	80	66600	19920	1920	50520	0000	009
	Time		945	950	1000	1010	1020		1021	140	C++1	1801	\$08	9711	1330	1740	616	1150	1620	832	1217	1222	1616	747	1157	1204	1527	1528	958	1530	1602	2001	200	1400
	Date		10/27	10/27	10/27	10/27	10/27	10/01	10/61	10/61	10/61	12/01	10/28	10/26	10/28	10/28	10/28	10/29	10/28	10/30	10/30	10/30	10/30	10/31	10/31	10/31	10/31	10/31	10/11	10/11	<u> </u>	10/11	20/11	11/02

TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE TWO DATA

ISB-9 STACE TWO
Geometric factor - G = 0.006699"
Depth factor = 160.00"
IC values from Replacement TBG-1

	Comments											2	F			Dry refil		E E	;		2	:	Rei			Py re		Refil		3	3		Refil
	RPD (KL mm.)	0%	20	X 0	<u>ک</u>	X 0	X	X 0	8	X	X 0	8	8%	1%	×	¥	×	X O	×	8	3%	X	00	17	0 X	34	17	70	0%	0%	24	1	8
	K (Lw)	4.03E-07	4.02E-07	4.02E-07	4.028-07	4.02E-07	4.02 E- 07	4.01E-07	4.011-07	4.011-07	4.00E-07	4.00E-07	3.76E-07	3.738-07	3.66E-07	3.53E-07	3508-07	3.50E-07	3.47E-07	3.472-07	3.351-07	3315-07	3318-07	3.291-07	3.298-07	3.20E-07	3.17E-07	3.17E-07	3.158-07	3.158-07	3.081-07	3.058-07	3.05E-07
cumulative	volume (cc)	1895.57	1889.82	190423	1908.44	1912.88	1921.12	1923.34	1927.97	1936.40	1030.01	10'6681	2054.04	2106.71	2169.57	2284.10	2359.49	2359.49	2440.96	2440.96	2555.60	2855.98	2655.96	2716.90	2716.90	2832.12	2941.33	2941.33	2998.64	2998.64	3114.09	3213.64	3213.64
	Kact	2.72E-07	2358-07	2.49E-07	2.44E-07	2.82E-07	4.B7E-07	80-360.8	2.43E-07	2.81E-07	1.80E-07	1.808-07	1.802-07	2.105-07	2.101-07	2.10E-07	2.0512-07	2.0512-07	2.03E-07	2.038-07	2.03E-07	1.85E-07	1.851-07	2.00E-07	2.00E-07	2.00E-07	1.858-07	1.858-07	1.946-07	1.94E-07	2.03E-07	1.77E-07	1.78E-07
	viec. factor	12	71	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1.2	12	12	12	12	12	1.25	12	1.2
	KIC	2.27E-07	1.96E-07	2.071-07	2.03E-07	2.188-07	4.06E-07	8.74E-08	2.02E-07	2.181-07	1.508-07	1.50E-07	1.502-07	1.75E-07	1.758-07	1.758-07	1.71E-07	1.71E-07	1.691.07	1.691-07	1.891-07	1.54E-07	1.54E-07	1.67E-07	1.67E-07	1.67E-07	1.54E-07	1.548-07	1.62E-07	1.62E-07	1.62E-07	1.486-07	1.48E-07
	Ħ	0.03	0.0	0.01	0.03	90.0	70.0	60.0	0.11	0.13	0.13	00.0	0.00	000	0.00	0.00	90.0	0.00	0.13	000	0.00	0.00	0.00	0.12	00.0	00.0	90.0-	00.0	00.0	00.0	0.00	-0.38	0.00
	≅	231E-07	1.975-07	2.06E-07	1.98E-07	2.10E-07	3.95E-07	5.98E-08	1.888-07	2.078-07	129E-07	129E-07	1.298-07	1.75E-07	1.751-07	1.752-07	1.728-07	1.72E-07	1.88E-07	1.88E-07	1.68E-07	1.54E-07	1.548-07	1.662-07	1.661-07	1.66E-07	1.548-07	1.548-07	1.621-07	1.62E-07	1.62E-07	1.506-07	1.506-07
	æ	30.63	29.31	27.94	26.63	26.26	22.69	22.00	20.58	17.94	17.13	35.75	36.00	19.63	35.50	34.58	11.13	35.88	10.56	35.83	33.50	231	35.75	16.81	35.81	34.75	0.81	35.94	18.13	35.88	35.75	181	35.75
cumulative	hour	132.04	13221	13238	132.54	132.71	132.88	133.18	133.36	133.71	133.86	133.91	150.48	162.83	157.83	174.78	17831	178.38	18226	182.29	198.24	203.63	203.84	206.54	206.56	222.21	228.08	228.09	230.88	230.89	246.68	252.11	252.13
dered time	aparonde .	000	009	800	800	009	800	1080	720	1200	600	120	59640	6460	17280	81740	12720	240	13960	120	67420	19380	9	10440	80	56340	21120	80	10020	909	56820	19560	9
	£	917	1420	1430	0771	1450	1500	1518	1530	1550	1600	1602	838	1057	1545	854	1226	1230	1623	1625	822	1345	1348	1840	1641	820	1412	2171	1700	1701	878	7171	1415
	1	11 /02	11/02	11/02	11/02	11/02	11/02	11/02	11/02	11/02	11/02	11/02	11/03	11/03	11/03	11/04	11/04	11/04	11/04	11/04	11/02	11/05	11 /05	11/05	11/05	11/08	90/11	11/06	11/06	11/08	11/07	11/07	11/01

TWO-STACE BORGHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-9 STACE TWO
Geometric factor – G = 0.006699"
Depth factor = 160.00"
IV values from Replacement TEC-1

	-	Comments		Refil	Dry refil		מיצוו	9	!	2			2		į	22			Refi				MCN VA	:			IND TEST	(Reful)
	-	HG-D (KT MB)	0%	7 0	22	7		5	X 0	X	22	1%	80		7	K 6	5 %	XI.	X	X	20		4 7	X 0	0	1%	80	
		K (tw)	3.0411-07	3.0415-07	2.981-07	2058-07		2.00E-07	2041-07	2.9412-07	2.B8 L- 07	2.B5E-07	2.858-07		70-3192	2.B4E-07	2.791-07	2.778-07	2.771-07	2.768-07	2 7RE-07	2.108	2.711.2	2.70E-07	2.70E-07	2.89E-07	2.69E-07	
ei Jeliner		volume (oc)	3259.07	3259.07	3374.52	915178	0 1 1 1 1 1	3454.78	3510.46	3510.46	3625.91	3725.88	172K AR	200010	3752.51	3762.81	3696.83	3993.59	3003.59	4042.85	1019 BE	60.250	4158.88	4188.84	4188.84	4255.83	1255 R3	
		KI CI	1.88E-07	1.87E-07	1.948-07	1 45.07	TO BOOK	1.88E-07	1.76E-07	1.78E-07	1.78E-07	1.501-07	1.00.00	10-2001	1.795-07	1.791-07	1.79E-07	1.588-07	1 FRE-07	1 838-07		1.536-07	1.631-07	1.618-07	1.82E-07	1.478-07	1 40 5.07	1.404.1
		۰																							12			
																									1.35E-07			
		님	0.13	000		3	-1.50	0.00	0.19	000		20.0		0.00	0.13	000	000	4	2	3 6	5	0.0	000	900	000	3 9	?	0.00
		⊒	1.558-07	1 555-07	100001	o and	1.448-07	1.44E-07	1.45E-07	1.45.8-07	1.45E-07	10-805-1	1345-07	1348-07	1.468-07	1 488-07	1 485-07	1918-07	10191	10-3161	12/11	1378-07	1378-07	1.351-07	1358-07	1 22 1	12051	1.23E-07
		æ	21.63	95 96	0000	AT-40	972	35.81	18.50	25. A.R.		25.5	3,00	35.53	18.00	15 50			007	30.05	20.20	38,00	34.75	25.44	28.80		0.70	35.58
camulative	clapsed time	hours	2K4.41	17:103	204.43	270.53	275.34	275.38	278.38	0.876	2000	10542	2882	209.68	302.69	10071	31773	21.1.5	323.78	323.51	326.53	326.64	341.86	AC 516	07010	24.0.40	340.01	348.08
	channel time	aprovade	6220	720	09	28040	16260	6	- OBBO		00	04450	22140	80	10860			04000	21760	120	10140	8	54060	6.0	010	000	18320	240
		1	1833	2001	1633	857	1326	1320		201	1631	738	1347	1348	1810		1001	192	1364	1356	1845	1646	717	- 6	OF A	926	1408	1412
		Ž	2007	11/0/	11/01	11/08	11/08	80/11	00/11	11/00	90/11	11/08	11/08	11/00	00/11	80/11	60/11	01/11	11/10	11/10	11/10	11/10	11/11	11/11	11/11	11/11	11/11	11/11

END OF TEST ISB-9 STACE I'M

THO-STACE BOREHOLE FIELD PERMEABULIY TEST STACE TWO DATA

TSB-10 STACK TWO
Geometric factor - G = 0.006634"
Depth factor = 165.25"
TO values from Replacement TEC-1

Comments		1	STAKT			P. 26			Reli	24 RG			Refil	Dry Refil				200		ury Kerin	į	200	1	Zen	Pr re	•	07 KG			E E	P. 45			Refil	
RPD (KI was)			•	2002	26%	11 %	11%	×	X 0	8%	2%	¥1	0 %	X 0	77	2	¢ è	\$ 3	K 1	¥ .	K 1	٠ د د	אן א	20	24	20	20	80	0%	20	1 4	¥0	0%	20	
ĵ	<u> </u>		•	2.46 E- 08	37191-08	80-1867	5.58E-08	5.501-05	5.512-08	6308-06	8.461-08	80-107-9	8391-08	8.37E-08	8.688-08	80.799	00-11000	00-1009	80-3289	7.478-08	7.55108	7.5511-08	7.548-08	7.8512-08	B.05K-08	B.04 E-08	8.038-08	8.038-08	8.01E-08	8.01 5-08	7.90E-08	7.91E-08	7.92E-08	7.91E-08	1
cumulative	And and and a		0	17.28	26.98	106.18	163.90	199.68	199.88	312.30	35229	385.69	385.69	500.33	555.23		5505	14808	609.51	721.32	773.41	773.41	618.48	819.49	934.13	991.02	104938	1097.01	111551	1115.51	1228.93	1253.45	1299.91	1588 91	1
5	7		ı	2.46E-08	5245-08	5.72E-08	A DAR-DR	7.3AE-08	7.38E-08	7.38E-08	B. B.2.E08	5.74E-08	5.741-08	ROAFLOR	1938-07	10-977	1248-07	1.06E-07	1.061-07	1.0616-07	9.45E-08	9.481-08	1.03E-07	1.036-07	1.03E-07	7.9515-08	7.95E-08	7.975-08	6.875-08	6.8812-08	8.882-08	8.445-08	8.33E-08	A 23 E-0A	0.050
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	VIEC. Inclor		1	7	1.1	12	! =	1 =	: :	: =	: =	: :	-	: :	-	71	12	11	T.	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	12	12	12	12			•	71
Š	312		ı	223E-08	4.778-08	4 77E-08	7.32E-08	200	8711.0	2711.0 8711.08	7.838-08	80 900 9	5 22 E-08	2020	10050	1.038-0.1	1.03E-07	9.62E-08	9.82E-08	9.62E-08	B.60E-08	8.80E-08	9.33E-08	9.338-08	9.331-08	7.231-08	7.23E-08		•	5 73E-08	5 73E-0A	7.045-08	00-21-02	00-346.0	6.94 E-08
į.	Ħ		ı	931	610		3		2 6		3 6	3 6	8 6	3 6		7	0.0	0.00	0.00	0.00	-0.12	0.00	0.0	0.00	000	00.0	00.0	-0.07	610				> <	20.0	0.00
ì	Z		•	237E-08	A ROTE-OR	00-2007 100-7	00 00 00	1308-00	000000	000000	200000	00-4007		0.181.0	00-78TQ	1.0411-07	1.04E-07	9.62E-08	9.62E-08	9.62E-08	8.661-08	8.66E-08	9.33E-08	9.335-08	9.331-08	7.23E-08	7.2316-08	8 67E-08	5.60E-08	5.60E-08	5 60 E-08	200.0	200	6.765-06	6.786-08
	젇		33.00	27.63		200	0000	9001	* 5	20.00	1705	0077	12.00	20.00	32.51	16.76	32.81	1691	34.75	31.25	15.08	35.38	21.06	35.63	35.81	18.13	31.44	1883	10.88	15.05	35.00	10.00	£0.14	13.73	35.75
cumulative clapsed time	hours			7 00	2 2	70.0	22.53	26.25	32.36	32.42	47.00	9009	55.25	27.00	71.36	75.02	75.08	79.00	79.20	94.52	98.72	98.63	102.20	10233	120.78	126.18	143.37	14833	15075	0.00	00001	16.20	7).ROT	174.55	169.75
elapsed time	econde	٠.	ć		36	6300	28200	19620	14640	240	62800	12460	16620	180	58080	13200	240	14100	720	65140	15120	750	12120	087	R6420	07701	8180	17880	2001		001	00/89	8400	17400	120
	Time		2	978	0141	1555	805	1332	1736	1740	820	1148	1625	1628	836	1218	1220	1615	1827	746	15.8	1205	1537	1021	6001	1526	4050	100	6661	0091	1603	838	1028	1548	1550
	Date		*4	19/01	12/01	10/27	10/28	10/28	10/28	10/28	10/58	10/29	10/29	10/29	10/30	10/30	10/30	10/30	00/01	2/01	16/61	10/01	16/01	10/31	10/01	10/11	10/11	20/11	11/02	20/11	20/11	11/03	11/03	11/03	11/03

TRO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE TWO DATA

ISB-10 STACE TWO
Geometric factor - G = 0.006634"
Depth factor = 186.25"
TO values from Replacement TBG-1

	Comments	भूग स्ती			2	त्रिम स्वी			1 2 2 3	Dry refil		ļ		Dry reful		1		1	Refu		•		;		į	E 20	;	Section 1		3		Refil	END TEST
	RPD (K1.mm)	0%	20	V 0	X 0	X 0	7 0	X	0	X X	K	80	0 X	X	K K	X o	¥0	× %	X :	71	X	۲ 0	2%	X	17	70	17	K O		20	X	0%	r.
	K (Lm)	7.94E-08	7.95E-08	7.9512-08	7.951-08	7.9518-08	7.061-08	7.958-08	7.9512-08	7.916-08	7911-08	7.001-08	7.901-08	7.88E-08	7.848-08	7.B2E-08	7.82E-06	7.70E-08	7.70E-08	7.561-08	7.632-06	7.838-08	7505-08	7.50E-08	7.42E-08	7.4216-08	7.32E-08	7.32E-06	7.288-08	7.28E-06	7.176-08	7.17E-08	7.13E-08
cumulative	volume (cc)	141494	1451.72	1487.34	148734	159934	1652.82	167731	1877.37	1791.59	1847.29	1871.23	1871.23	1965.65	2026.67	204154	204154	2148.11	2148.11	2176.09	2195.98	2195.98	2283.08	2283.08	2336.78	2336.78	243128	2431.28	2492.00	2492.00	2577.49	2577.49	2614.88
	KIC	8.33E-08	8.42E-08	7.94E-08	7.94E-08	7.94E-08	820E-08	7.38108	7.388-08	7.381-08	7.76E-08	7518-08	7511-08	7518-08	6.97E-08	5.83E-08	5.83E-08	5.748-08	5.74E-08	6.03E-06	5.15E-08	5.15E-08	4.89E-08	4.88E-08	4.75E-08	4.75E-08	5346-08	5346-08	5.52E-08	5.52E-08	4.78E-08	4.70E-08	4.73E-08
	viec. factor	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	125	126	12	12	12	12	12	12	12	12	1.2	12	12	12	12	12
	KIC	6941-08	7.02E-08	8.82E-08	6.82E-08	6.62E-08	6.83E-08	8.151-08	8.15E-08	6.15E-08	6.47E-08	\$28E-08	6.26E-08	6.26E-08	4.97E-08	4.69E-08	4.89E-08	4.59E-08	4.59E-06	4.192-08	4.29E-06	4.29E-08	4.07E-08	4.07E-08	3.961-06	3.96.5-08	4.45E-08	4.45E-08	4.60 E-08	4.60E-08	3.98 E-08	3988-08	3.95E-08
	뇓	0.00	90.0	0.13	000	00.0	00.0	0.12	00.0	0.00	0.0	000	000	00.0	-0.38	013	0.00	018	0.00	-1.00	0.19	00.0	0.13	00.0	-0.19	0.00	90.0	00:0	-0.31	000	-0.06	000	90.0
	Ŋ	6.78E-08	7.061-08	6.54E-08	8.54108	8.54.8-08	6.83108	6.05E-08	6.05E-08	6.05E-08	80-161-9	8.28E-08	6.261-08	6.26E-08	5.131-08	4.58E-08	4.56E-08	4.57E-08	4.57E-08	4.87E-08	4.151-08	4.15E-08	4.05E-08	4.05E-08	4.00E-08	4.00E-08	4.44E-08	4.44E-08	4.68E-08	4.6815-08	3.995-08	3 001-08	3.97E-08
	z	34.06	22.63	11.58	34.81	35.31	18.69	11.08	35.50	35.76	19.44	11.00	35.56	38.00	23.26	16.83	38,00	350	35.50	25.58	20.00	35.63	8.58	38.00	1831	36.00	6.63	36.00	17 13	35.88	931	90 90	24.38
cumulative	hour	188.88	190.43	19436	NE 701	21033	215.70	218.85	216.68	23430	240.18	242.97	242.98	258.78	26420	268.50	266.52	282.50	282.82	267.43	290.45	290.47	305.57	305.60	314.77	314.78	329.78	329.80	338.72	338 73	353.75	15377	360.13
stored line	appropriate the second	61880	12780	14100	130	150 67190	19320	10620	120	58220	21180	10020	Ş	SARBO	19500	8280	90	58820	80	16620	10860	0	54360	120	33000	60	24000	ç	32100	80	27		22920
	i i	AKA	1221	1834	900	1020	2761	1877	1845	201	1418	1703	1704	101	1417	1835	8891	853	426	1331	1833	1833	730	177	1821	1853	759	763	0791	0101	750	2 2	1413
	ž	20 V 1	•0/11 •0/11	10/11	10/11	11/04 11/06	11/05 11/05	11/05	11/05	11/08	11/08	11/08	20/11	2/17	11/21	11/2	11/01	- V	20/11	2 / I		00/11	20/11	60/11	00/11	0	80/11	01/11	01/11	01/11	01/11	11/11	

TWO-STACE BOREHOLE FIELD PERMEABULTY TEST STACE TWO DATA

Geometric factor – G = 0.006576"
Depth factor = 234.75"
IV values from Replacement IEG-2

Commonla															!					i	Dry recit						Refill						
(1 tz) (cda		(ļ	• }	Ķ	8	2 4	×	8	X 0	X 0	X	×	K O	7 0	X 0	X	5 2	K :	XI	X 0	X.	X 0	K ·	XI :	70	6	20	0 %	1,4	0%	0%	20
1	(Bury) W	ĺ		1 305-08	1.401-08	1.51 E- 08	1.448-08	1395-08	1.30E-0B	1301-08	1308-08	130E-08	1291-08	1298-08	1281-08	1.265-06	1271-08	129E-08	129E-08	1286-08	1281-08	1291-08	129E-08	129E-08	130E-08	1.301-08	1308-08	1308-08	1318-08	1318-08	1.32E-08	1325-08	1.328-08
cumulative	ANIMINE (IET)																							339.16									
ŧ	7		• !	1.301-08	1.671-08	1562-08	1131-08	1.0612-06	1.116-08	1115-08	1.308-08	1325-06	1258-08	1.197-08	128E-08	1258-08	1208-08	1.79E-08	1328-08	123E-08	1238-08	1.461-08	1.31E-08	123E-08	1.83E-08	1315-08	1.31 E-08	1.42E-08	1.506-08	1.39E-08	1386-08	1.45E-08	1.28E-08
•	viec. factor		•	-		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
i	200			1.181-08	1.516-08	1.42E-08	1.02E-08	9.80E-09	1.01E-05	1.018-08	1.16E-08	1.20E-08	1.131-08	1.081-08	1.148-08	1.148-08	1.09E-08	1.62E-08	1.20E-08	1.12E-08	1.12E-08	1.32E-08	1.191-08	1.12E-08	1.66E-0B	1.19E-08	1.19E-08	1.298-08	1.36E-08	1.26E-08	125E-08	1.32E-08	1.175-08
ł	Ħ		1	613	0.13	90.0	0.0	912	0.13	000	000	0.13	0.00	670	00.0	0.00	90.0	-013	0.00	-0.19	0.00	0.07	0.25	-0.07	0.13	0.12	0.00	000	0.25	000	000	0.07	0.00
•	⋥		1	1.23E-08	1.39E-08	1.428-08	1.038-08	1.02108	1.0211-08	1.028-08	1.165-08	1.151-08	1.13E-06	1.168-05	1.148-08	1.148-08	1.10E-08	1.88E-08	120E-08	1.131-08	1.138-08	1.30E-08	1.17E-08	1.14E-08	1.56E-08	1.185-08	1.185-08	1 29 E-08	1.27E-08	1.26E-08	1.251-08	1.28E-08	1.175-08
	론		35.25	31.58	30.13	17.50	14.38	12.10	A. A.	33.00	30.69	27.63	1750	16.19	12.75	35.81	25.50	21.58	19.25	6.19	35.75	31.75	20.63	17.38	15.25	200	35.63	33.88	30.31	. 82.81	15.88	13.25	3.50
cumulative elapsed time	hours		000	520	400	23.02	28.80	32.63	47.20	17.27	50.87	55.35	71.48	75.10	79.08	79.27	95.65	99.57	103.37	121.57	121.83	127.15	01771	14930	151.82	168.30	168.40	17073	175.62	19258	196.27	200.08	216.05
elapsed time	ecconde		0	18720	0878	57880	0010	00103	14020	240	12240	IRRA	58080	13020	07671	2 2	58980	15180	12600	85520	080	07101	00018	18720	9060	50340	360	207	17580	00013	13260	13740	57480
	Time		829	1171	1550		300	2002	77	110	0711	0.81	000	2161	181	1691	745	1158	1528	050	900	1525	201	720	1605	7.0	* 20		1100	2001	100	1631	919
	Dete		10/27	10/27	12/01	10/21	02/01	07/01	10/20	82/01	10/28	10/2	82/01	08/01	08/01	00/01	200	10/01	2/01	16/21		10/11	11/01	20/11	20/11	20/11	11/03	50/11	11/03	11/03	6/2	* (1	11/05

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

TSB-11 STAGE TWO	Geometric factor $-G = 0.006576$ "	Depth factor = 234.75"	TC values from Replacement TEG-2
14	Ğ	ä	×

	Comments		E SE											E-E-E					2						
	1 20 000	(Maria)	20	6	02	17	X 0	0%	XO.	17	X	0 %	8	80	X 0	0	20	0X	20	20	3 6	מא	80	20	
	1104	(CM3) A	1.32E-08	1.32E-08	132E-08	1.33E-08	1331-08	1.33E-06	1.33E-08	1348-08	1.34E-06	1.346-06	1.351-08	1.35E-08	1.351-08	1.358-08	1.351-08	1351-08	1.358-08	ACT ACT	20 400.	1.355-05	1.35E-08	1.35E-08	
completive	1	volume (cc)	462.84	496.70	503.94	540.75	553.62	559.45	659.48	598.70	61135	71818	81138	651.22	663.89	870.72	105.11	724.51	724.85	76007	40.00	779.98	810.52	82229	İ
	ŧ	22	1.298-08	1.538-08	1.59E-08	1.48E-08	1.36E-06	1.32E-06	1.32E-08	1.49E-06	1.402-08	1.488-08	1388-08	1.385-06	1.32E-06	1.412-08	1.388-08	1.328-08	1328-08		1.418-00	1348-08	1.301-08	1248-08	
	•	viec factor	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	11	1.1	1.1	77	77	1.1	1 =	=	: =	::	.	1.1	1.1	-	:
	•	KIC	1.176-08	1398-08	1.45E-08	1.331-08	1238-08	1.20E-08	1201-08	1.358-08	1271-08	1331-08	1258-08	1.251-08	1201-08	1 241-08	1 261 -08	1 201-08	#0-10c	00-9071	1.286-08	1.22E-08	1.168-08	BO-751 +	
	;	ដ	00.0	0.00	90.0	90.0	90.0	0.00	000	900	0.13	900	700	000	9	610	ָ ק	<u> </u>	? ?	0.0	0.00	61.0	000		>
		幫	1.17E-08	1395-08	1.418-08	1.32108	1258-08	1.201-08	1.2018-08	1.3618-08	1311-08	1281-08	1.251-08	125108	1 ARE-OR	1 2 TO 1	1978.08	00-121	1254	1221-00	126E-06	1.261-08	1.181-08	90	1.105-00
		뵨	35.56	31.25	2000	17.58	13.58	1 75	36.60	23.31	10.38	17 RA	2 2	A F	21. F.			20.00	10.00	36.00	26.00	18.81	0.31		oro
cumulative	chosed time	Proor	218.18	221.55	22135	23000	245.82	248.85	248.87	284.49	28.080	271 08	2000	00000	203.07	000	21082	31120	320.43	320.45	335.45	344.37	350 40		380.11
;	elapsed Lime	Beconda	480	00101	0200	20001	0000	0000	10501	4 60	00.00	77.10		0000	00	00001	09801	24400	33060	8	24000	32100	00173	04160	02822
		Time	427	130	200	Abor	270	141	70/1	0071	200	0111	1021	100	299	1332	1635	743	1654	1666	755	CAR		70.	1414
		3	1 /0E	20/11	00/11	90/11	90/11	90/11	11/00	11/08	11/0/	20/11	70/11	11/08	11/08	11/08	90/11	6 0/11	11/00	11/09	11/10		21/11	11/11	11/11

END OF TEST ISB-11 STAGE TWO

TWO-STACE BOREHOLE PIELD PERMEABILITY TEST STACE TWO DATA

Geometric factor – G = 0.006401" Depth factor = 268.00" TC values from Replacement TEG-2

TSB-12 STACK TWO

	nuscimon	BIAKI				;	E		1	3	į	2		!	Reco	!			1	3		E S		į	2		E			Refil	Dry refill		
1	HO-D (KTAND)			30X	16%	89%	X 0	12%	5 %	X :	X :	X ;	22	X	8	K	%	K :	X I	20	¥	X	X 0	X :	20	6	20	7 0	0 X	X 0	8	20	
	K (Lws)		6.111-00	1.101-08	1.27E-08	2.615-06	2.618-06	80-1962 ·	3.02E-08	3.02E-06	3.291-06	3.301-08	3,391-08	3.411-08	3.411-08	3501-08	3.511-08	3541-08	3.57E-08	3.571-08	3.591-08	3.591-08	3.618-08	3.611-08	3.612-08	3.6211-08	3.6216-08	3.6412-08	3.642-08	3.648-08	3.648-08	3.66E-08	
cumulative	volume (cc)	0 0 0	2,41	11.85	18.50	105.57	105.76	163.03	168.92	169.46	278.45	280.80	324.62	347.37	347.81	449.78	16231	481.28	51325	613.85	623.25	624.04	654.41			766.18	786.96	_	84327		957.98	1000.20	
	ti M	•	6.11E-09	1.151-08	1.75E-08	3.118-08	3.111-08	4.15E-08	3.50L-08	3.80E-08	3.82E-08	3.532-08	4.151-08	3.85E-08	3.85E-08	3.858-08	3.851-08	4.385-08	4.00E-08	3.998-08	3.71E-08	3.718-08	4.04E-08	3.72E-08	3.72E-08	3.67E-08	3.6712-08	4.05E-08	3.668-08	3.668-08	3.6612-08	4.09E-08	!
	viec factor	•	1.1	11	1:1	1.1	1.1	1.1	11	-	11	11	11	1.1	1.1	1.1	-	1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	Ξ	11	!
	KIC	•	7.37E-09	1.051-08	1.591-08	2.838-08	2.B3E-08	3.778-08	3.451-06	3.451-08	3.48E-08	3.481-08	3.77E-08	3.32E-08	3.321-08	3.501-08	3508-08	3.988-08	3.83E-08	3.631.08	3.378-08	3.378-08	3.67E-08	3386-08	3.3812-08	3.34 E-08	3.345-08	3.688-08	3.338-08	3.331-08	3331-08	3.728-08	;
	뒫		9.6	9.6	920	-0.25	000	-013	0.13	0.00	90.0	0.00	60.0	-012	000	613	0.00	0.00	0.13	0.00	000	0.00	-0.19	0.00	0.00	90.0	0.00	0.13	000	000	000	000	·
	Ħ	•	1.58E-08	1.251-08	2.088-08	2.8612-08	2.86E-08	3.51.5-08	3.361-08	3361-06	3.4716-06	3.47E-08	3.78E-08	3.378-06	3.37E-08	3.521-08	3521-08	3.988-08	3.5816-08	3568-08	3.37E-08	3.37E-08	3.75E-08	3381-08	3.3812-08	3.348-08	3.348-08	3.7316-08	3.33E-08	3.338-08	3335-08	3 705-08	2.100
	룑	33.50	32.76	20.68	27.75	0.69	33.38	18.89	13.75	34.50	126	33.81	20.13	13.06	34.13	2.44	35.86	28.00	18.06	35.88	1.88	35.25	25.81	17.63	35.38	2.75	35.50	25.06	00 81	35.38	0000	10.88	14:00
cumulative elapsed time	hours	000	0.72	7 22	5.7A	21.07	21.10	27.07	29.42	29.50	44.77	45.38	26.03	54.32	54.38	68.72	69.63	72.63	78.97	77.05	93.05	93.17	97.00	100.80	100.87	116.35	116.47	120.73	12407	124.20	14950	117.08	08:111
clanged time	seconds	o	2580	12800	5840	55020	120	21,480	8460	300	54960	2220	20100	12080	240	51800	3300	10800	15600	300	57600	420	13800	13660	240	55740	120	15360	00021	007	V0 F 20	65660	01/61
	Time	1017	1130			751	763	14. 14.	1812	1827	743	820	1355	1718	1720	2710	3 5	135	1555	1800		708	1157	1545	1549	718	707	(3)	1031	1001	#001	128	1436
	Date	10.78	82/01	02/01	10/80	10/20	12/01	10/21	10/21	10/21	10/28	10/28	10/28	10/28	10/28	02/01	10/20	10/20	10/20	02/01	10/20	05/01	26/01	6/21	02/01	200	10/01	16/01	16/61	10/01	10/01	10/11	10/11

TRO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

TSB-12 STAGE TWO
Geometric factor - G = 0.006401"
Depth factor = 266.00"
TC values from Replacement TEG-2

•																																	
	Comments	E-FE		E -5			2		2		i	2 E					1				2		Z				i	2		•	Refil		
	RPD (KI,ma)	20	14	X 0	X	0%	%	17	0%	X 0	X0	¥1	¥ (ָל מ	K (K :	XI :	X0 :	X 0	۲ ·	X :	X :	מאַ	X 0	K 1	X :	17	× 0	20	20	80	1	<u>×</u>
	K (twa)	3.66E-08	3.62E-08	3.82E-08	3.82E-08	3.62E-06	3.82E-08	3561-06	3.581-08	3.581-08	3571-06	3541-08	3.5311-08	3.53E-08	3.52E-08	3.5211-08	3.491-08	3.4916-08	3.481-08	3.478-08	3.471-08	3.431-08	3.431-08	3.421-08	3.416-08	3.411-08	3.372-06	3.3716-08	3.36E-08	3.37E-08	3.37E-08	3.338-08	3.31E-08
cumulative	volume (cc)	1001.58	1104.08	1104.88	114150	1160.19	116059	125251	1253.01	1273.53	120825	1366.45	1305.22	1416.52	1420.98	1421.13	1602.19	1502.55	1536.33	165059	1550.67	1632.95	1633.21	1667.99	1681.05	168122	1761.66	1761.75	1792.31	1805.79	1805.94	1882.16	1902.69
	KICH	4.09E-08	3.338-08	3.33E-08	3.628-08	3.30E-08	3.30E-08	321E-08	3211-08	3.301-08	325E-08	3148-08	3.338-08	3.06E-06	3.02E-08	3.038-08	2.91E-08	2.92E-08	3.09E-08	2.B1E-06	2.B1E-08	2.B2E-08	2.83E-08	2.958-08	2.70E-08	2.715-08	2.735-08	2.738-08	2.838-08	4.69E-08	4.70E-08	2.58E-08	2.15E-08
	viec fector	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	==	1.1	1.1	1.1	==	11	r1	7	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	
	KIC	3.72E-08	3.038-08	3.031-08	3.29E-08	3.001-08	3.001-08	2.92E-08	2921-08	3.00E-08	2.951-06	2.851-08	3.031-08	2.78E-08	2.758-08	2.751-08	2.658-08	2.851-08	2.51E-08	2.55E-08	2551-08	2578-08	2.57E-08	2.66E-08	2.46E-08	2.468-08	2.488-08	2.48E-08	2578-08	4.27E-08	427E-08	2.358-08	1.958-08
	2	0.00	0.25	0.0	-0.07	0.13	000	0.12	0.0	0.00	0.25	0.00	0.00	0.07	70.0	00.0	0.00	0.00	0.00	90.0	0.00	90.0	00.0	-0.06	0.00	0.00	-0.06	0.00	-0.13	90.0	000	0.07	-0.69
	Z	3 70 1 - 08	3.001-08	3.0016-08	3.318-08	20311-08	293E-08	2.91E-08	2918-08	3.00E-06	2.85108	2.85K-08	3.03E-08	2.751-08	2.82E-08	2.82E-08	2.85E-08	2.65E-08	2.518-08	2.52E-08	2.528-08	2.56E-08	2.56E-08	2.70E-08	2.46E-08	2.46E-08	2.491-08	2.491-08	2.6116-08	4.21.8-08	4218-08	2348-08	2.19E-08
	Z	35.44	3.54	35.38	97,00	18.10	35.83	7 OR	35. A.B.	29.50	22.44	35.63	27.31	20.89	18.81	35.25	10.06	35.51	25.31	20.88	35.88	1031	35.58	24.75	20.89	35.75	10.75	35.88	26.38	22.19	25.88	12.19	5.81
cumulative	Process	149.17	18.07	185.10	36041	71.671	173.53	80 881	18007	19228	106.12	213.16	217.32	221.07	221.90	22193	236.63	236.90	242.50	245.35	245.37	260.98	261.03	267.15	269.73	289.77	285.48	285.50	20103	202 5A	202 60	308.38	313.17
	caped dur	0.60	000	00400		0000	240		200	11560	13800	61320	15000	13500	3000	120	53840	240	20520	0000		56220	5	22020	9300	120	7.87.80	9000	2001	FERN	900	F6820	17220
	¥	- E	7001	407	200	121	\$ 291	1020	60.0	200	1503	100g	1915		1850	1852	748	, Y	1332	197	101	755	00°	2071	1840	6791	1016	(20 0	020	0001	1040	1101	1315
	2	Date	10/1	70/1	20/1	20/1	707	70/1	1/03	50/1	26	20/1			10/11	70	17/1 17/2	00/11	00/11	20/11	20/11	00/11	90/11	11/00	11/08	20/11	90/11	70/11	70/11	20/11	70/11	70/11	11/08

TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

Geometric factor – G = 0.006401." Depth factor = 266.00." TC values from Replacement TEG-2

ISB-12 STACE TWO

	-		2					30				2			2			2			夏		ICAL DIA	
	1-01) was	Man (Man)	20		X	<u>×</u>		X 0	20		X 0	20	:	17	X0	; ;	17	X 0	•	<u> </u>	20	: ;	5	
			A0-11-04	20.00	3315-06	1978-0A	200	3271-08	3.25E-08		3251-05	A SELAR		3.21E-06	1216A		3701-06	3.191-06		3725-05	AC-17.		3726-05	
an Peline	Culturative	volume (oc)	1000	2000	1916.52	TORK ON	700001	1985.08	201728		2029.51	90.00 KO		2098.35	SOOR KO		2140.01	214099		2208.14	220R 21		2238.37	
	1	מל	P I F P OB	2.1.25-00	2.72E-08	9076	6.40E-00	2.401-08	P. FAR-DA		2.478-08	4016	6.408-00	2.42E-08	90-1676	6.46.B-V0	2.461-06	2 45 E-DA		2351-08	PARE OF	00-9073	2375-06	
		viec factor	-	7:7	T :T	:	7	1.1	-	1.7	-	:	7:7	1.1	-	7:7	- 1		:	:	-	7.7	: :	
		S S S	90	1 305-00	2.47E-08	60	2788-08	2.1816-08	9 3K W. AB	10 Pace 2	225E-08	60	90-7C72	220E-08		2077	2.23E-08	9038 08	20073	2146-08	80	2748-70	2161-08	
		ដ		0.00	0.12		-0.07	000		ì	90.0		0.00	000		0.00	6 7 9	6	200	000		0.00	0.00	
		×	! !	2.1916-08	2 41 E-OR		2191-08	2.191-08		2.40E-05	2218-08		2212-08	2.208-08		2201-06	227E-08		27.77	2.148-08		2.146-08	2.161-06	
		7	•	38.00	21 83	2	10.44	36.04		2034	22.13		35.76	AF. 1.		35.51	22.83		30.70	14.88		35.7b	27.00	1
cumulative	chpsed time	1		313.18	20809	34.016	331.16	21117	17700	337.52	34020		34022	9KK 27	7000	355.30	384.20		36422	370.37		379.38	385.55	
	chped lime	4		80			54840	6	3	22860	0880	200	8	00173	04100	02 1	43040		දු	K4K40		8	22200	
		ŧ		1316		1800	717	316	91,	1336	1017	101	1818	200	12)	723	1817	101	1618	7.07	3	728	42.61	2007
		2	nere	11 /08	20/11	11/06	11 /00	90/11	80/11	00/11		80/TT	1 /08	67,11	11/10	11/10		71/11	11/10		11/11	11/11		11/11

END OF TEST TSB-12 STAGE TWO

TWO-STACE BOREHOLE FIELD PERAGRABILITY TEST STACE TWO DATA

ISB-13 STAGE TWO
Geometric factor - G = 0.006243"
Depth factor = 356.B"
IV values from IEG-3

	Comments		START			2 2	F 15				F 45			5	P7 46				Pr F			Refi	F		Refit		Refil	Dry refill		1 22	भिन स्त्री		Refi
	RPD (KI.ms)		ı		22	70	¥	22	X	X O	8%	1%	0	X 0	8	0	7 0	X S	X	X	0%	7 0	X	1,4	0	2%	0%	7 .	17	20	3%	20	0%
	K (Lm)		1	80- 3 0 F 9	522E-08	5.23E-08	5.44E-08	5.20E-06	6.10E-08	5.09E-08	4.718-08	4.75E-06	4.75E-08	4.758-06	4.75E-08	4.77E-08	4.78E-08	4.781-08	4.81E-08	4.85E-08	4.87E-08	4.B7E-06	4.93E-08	5.00E-08	5.01E-08	5.08E-08	5.08E-08	5.448-08	5.50E-08	5.50E-08	5.641-08	5.66E-08	5.66E-08
cumulative	volume (cc)	• .	000	45.83	68.77	67.21	180.84	247.01	269.34	271.49	382.92	453.70	461.58	462.86	588.04	627.84	679.93	680.72	795.14	853.05	902.93	904.21	1018.05	1093.66	1094.51	1160.09	1162.02	1274.83	137036	1371.78	1486.20	1569.44	1570.20
	효		1	5.10E-08	5.52E-08	5.518-08	5.51 R-08	4.37E-08	4.00E-08	4.00E-08	4.00E-08	5.04E-08	4.75E-08	4.75E-08	4.75E-06	5.33E-08	4.92E-08	4.93E-06	4.93E-08	5.79E-08	5.37E-08	5.37E-08	5.378-08	6.86E-08	6.86E-08	7.88E-08	7.885-08	7.88E-08	6.90E-08	6.90E-08	6.901-08	6.13E-08	6.13E-08
	viec. factor		1.1	1.1	11	1.1	11	1.1	11	11	1.1	1.1	1.1	1.1	1.1	1.1	T.1	1.1	11	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	1.1	1.1	1.1	1.1	. =
	KIC		ı	4.63E-08	5.01 E-08	5.01E-08	5.01E-08	3.978-08	3.541-08	3.841-08	3.841-08	4.581-08	4.32E-08	4.32E-08	4.32E-08	4.85E-08	4.48E-08	4.488-08	4.485-08	5.26E-08	4.881-08	4.88E-08	4.88E-08	6.24 E-08	6.24E-08	7.16E-08	7.16E-08	7.16E-08	6.27E-08	6.27E-08	627E-08	5.57E-08	5.57E-08
	멑		1	90.0	90.0	0.00	0.00	913	0.19	0.00	00.0	0.31	90.0	0.00	0.00	90.0	0.12	00.0	00.0	0.13	90.0	00.0	0.00	00.0	0.00	0.00	0.00	00.0	00.0	0.00	0.00	613	0.00
	Z		1	4.81E-08	5.06E-08	5.06E-08	5.0612-08	3991-08	3.548-08	35411-08	35411-08	4.85E-08	421K-08	4.218-08	4.21E-08	4.B7E-08	4.44E-08	4.44E-08	4.448-08	5.30E-08	4.90E-08	4.90E-08	4.90E-08	6.24E-08	624E-08	7.168-08	7.16E-08	7.16E-08	6.27E-08	6.278-08	6.27E-08	5.605-08	5.608-08
	룑		33.56	19.38	12.81	35.25	34.88	1425	7.31	34.63	31.00	00.0	8.58	32.76	32.61	20.44	426	35.56	35.75	17.76	226	35.38	33.50	10.00	35.38	15.00	35.06	35.00	5.31	35.56	33.00	7.13	34.86
cumulative	hour		000	3.53	202	013	20.40	28.37	28.72	28.97	1127	49.80	60.50	53.02	69.17	72.08	76.43	78.50	92.58	96.48	10028	10038	115.82	12020	12025	123.53	123.63	141.97	14750	147.58	164.40	169.80	169.85
elanged time	s proces		0	12720	6520	120	55080	21480	6460	006	55080	19920	2520	12300	54900	10500	15660	240	67900	14040	13680	380	55560	15780	180	11820	380	66000	19920	300	60540	19440	180
	Time		1130	1502	1834	1636	192	1362	1613	1628	872	1318	1400	1726	940	1135	1556	1600	805	1159	1547	1853	419	11.42	1145	1502	1500	928	1500	1505	757	8151	1321
	Dete		10/28	10/28	10/28	10/28	10/27	10/27	10/27	10/27	10/28	10/28	10/28	10/28	10/20	10/20	10/29	10/20	10/30	08/01	200	26/01	5/21	15/01	10/01	16/01	16/61	16/21		1	20/11	11/03	11/02

(

TWO-STACE BOREHOLE FIELD PERMEABULTY TEST STACE TWO DATA

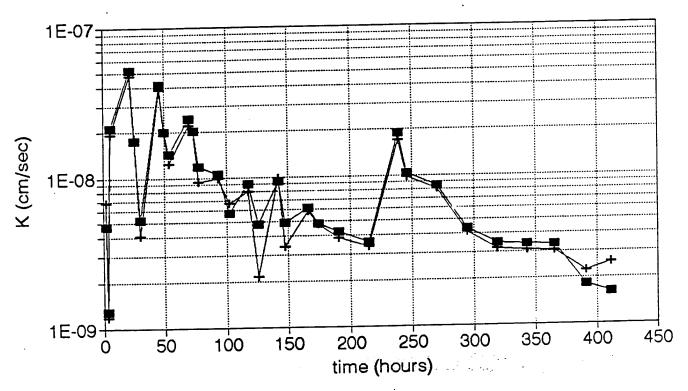
ISB-13 STACE TWO
Geometric factor - G = 0.006243"
Depth factor = 356.5"
IC values from IEC-3

	Comments			֓֞֞֞֞֜֞֞֞֞֜֞֟֓֓֓֓֓֓֓֓֟֟֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֓֟֓֓֓֓֟֜֟֓֓֓֓֓֟֓֓֓֡֡֞֟֓֓֡֓֜֜֜֡֓֜֡֓֜֡֡֜֜֡֓֜֡֡֡֜֜֜֡֡֜֜֜			į		Py refi	1	07 rd	Dry refil			ţ		Dry 140	1	Keri	į	25 T	Dr. re@		2	1	Recil	Dry refil		Refi		2			13.0	
	RPD (RD.mm.)	. 20	2	.	K 1	X (X 0	K 0	×	X 0	X	6 0	X 1	K !	K :	X0	X0 :	X :	X :	7 0	X 0	X 0	X 0	6	6	20	X 0	20	0	20	70	20	5 8	5 8	K n
	K ((m)	K R 7 E - OR	00 2100	0.00	6.738-06	6.731-08	5.73E-08	5.73E-08	5.72E-08	5.728-06	5.72E-08	6.72E-08	6.71E-08	5.71E-05	5.71 E-08	6.71E-08	5.71E-08	5.70E-08	6.70E-08	5.70E-06	5.70E-08	5.70E-08	5.89E-08	5.89 E-0 8	5.69E-08	5.69E-08	5.688-08	5.68E-08	5.68E-08	5.68E-08	5.688-08	S. S. S. D. A.	00-0000	00-3000	5.65E-08
cumulative	(w) andopus	181080	80.8101	1621.00	1735.03	1762.49	1834.55	1835.22	1948.63	2008.94	2058.43	2171.85	2249.07	224952	2288.52	2288.99	240421	248729	2467.51	2624.90	2625.14	2640.59	2715.82	2715.85	2754.65	2755.12	2870.95	2938.14	2938.37	2975.76	2975.99	77 1006	A 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	31/4.90	3175.12
	5	906	00-300-0	8.385-08	8.38108	5.70E-08	5.82E-08	5.82E-08	5.82E-08	6.74E-08	6.74E-08	6.74E-08	5.43E-08	5.43E-08	5.51E-08	5.51E-08	5.61 E-08	5.43E-08	5.42E-08	5.64E-08	5.83E-08	5.631-08	5.35E-08	5.35E-08	5.5812-08	5.5710-08	5.578-08	5.501-08	5.505-08	5.321-08	5.325-08	90 90 90	5.325-00	5.25 E-08	5.251-08
	arian fandor		. :			T 1	1.1	1.1	11	1.1	T1	11	1.1	11	11	11	T	11	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1	1.1	1.1	=	-	: =	::	: ·	=	=
	2	7 20 2	20-709	5.B0E-08	5.80E-06	5.18E-06	5.11E-08	80-2119	6.112-08	5.22E-08	5.22E-08	5.22E-08	90-2161	4948-08	5.10E-08	5.10E-08	5.10E-08	4.938-08	4.936-08	5.12K-08	5.12E-08	5.12E-08	4.86E-08	4.86E-08	5.06E-08	5.06E-08	5.06E-08	5.00E-08	5.00E-08	4.845-08	ACT TO	00-2101	4.B4E-08	4.77E-08	4.77E-08
	Ę	؛ ب	0.13	0.0	0.00	0.00	0.18	0.00	00.0	00.0	00.0	0.00	-0.12	0.00	91.0	0.00	0.00	900	000	90.0	000	0.00	-013	000	0.07	00.0	00.0	610	000	9		0.0	0.00	9.12	0.00
	i	2	5.75E-08	5.75E-08	5.75E-08	5.18E-08	5.05E-08	5.05E-08	5.05E-08	5.22E-08	522E-08	5.22E-08	4.96E-08	4.96L-06	5.02E-08	5.021-08	5.02E-08	4.941-08	4941-08	5.10E-08	5.101-08	6.101-08	4 89E-08	4.891-08	5.038-08	5.038-08	5.038-08	5.045-08	5.045-08	4021-08	00 300	4.32E-00	4.92E-08	4.80£-08	4.80E-08
	i	털	19.50	35.44	34.31	1958	3.38	35.31	34.08	15.38	35.25	33.50	9.50	35.75	23.63	35.81	33.38	7.58	35.25	23.83	35.88	34.38	100	35.75	23.69	36.00	33.63	1975	35.75	27.6	21.1.2	30.00	33.44	7.50	35.75
camulative	chped line	hour	172.92	173.00	188.47	191.73	105.57	105.82	212.63	218.77	220 KR	236.42	242.05	242.08	244.83	244.67	280.50	266.60	268.82	26922	26923	284.97	200 50	290.52	293.25	203.2R	30000	00:00	313.83	70010	10.010	31652	331.77	338.09	338.11
;	clapsed time	seconds	11040	300	55880	11780	00861	0001	280	1480	13740	67000	20280	120	0086	120	58280	21960	ç	0380		SAR40	0.000	02881	0840	130	AR SAO	1300	00311		0998	09	24900	22740	80
		Time	1625	1630	758	7111	1804	100	001	900	1605	75.	1333	1335	1820	1822		1408	2011	1843	2701	101	929	9	1645	25 25		050	0121	9161	1802	1603	718	1337	1338
		Pet Pet	1/02	705	1 / 3		2 5	3 5	20/1			, y	1/92	1 /0K	2 S	1 / GF	20/1	90/1	90/1		90/11	90/11	70/11	70/11	11/0/	20/11	11/04	11/08	11/08	90/11	80/11	11/08	11/09	60/11	60/11

1

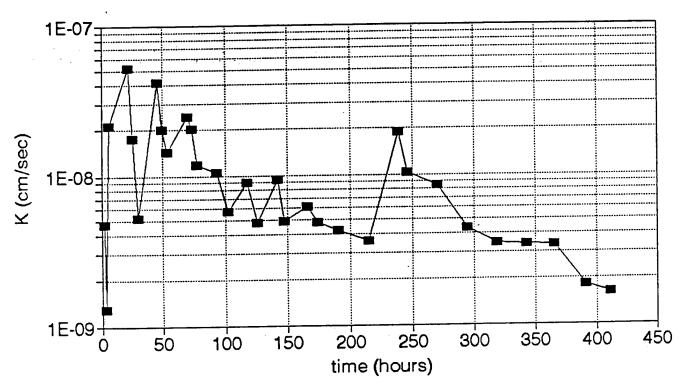
TWO-STACE BOREHOLE FIELD PERMEABILITY TEST STACE TWO DATA

ISB-13 STAGE TWO
Geometric factor - G = 0.006243"
Depth factor = 356.8"
IV values from TEC-3

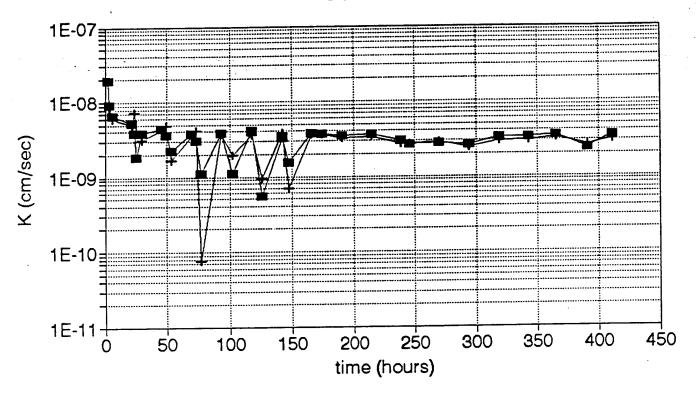

	Comments		Refil	P. 15		Recil		Refi		TXII ONI
	RPD (KLvm)	0%	20	20	80	20	20	X 0	20	Х
	K (Lm)	5.85E-08	5.85E-08	5.54E-08	5.53E-08	5.63E-08	5.53E-08	5.83E-08	5.51E-08	5.60E-08
An milaline	volume (cc)	321251	3212.74	3328.57	3409.82	3410.03	3441.62	344184	3559.87	3636.12
	מכב	5.43E-08	5.42E-08	5.42E-08	5.13E-08	5.148-08	5.112-08	80-10F9	5.10E-08	5.05E-08
	viec factor	1.1	1.1	-	1.1	11	1.1	11	11	77
	KIC	4.93E-08	4.93E-08	4.93K-08	4.678-08	4.87E-08	4.54E-0A	4.64108	4.548-08	4.59E-08
	Ħ	0.00	0.00	0.00	613	000	000	000	000	90.0
	¤	4.931-08	4.93E-08	4.93108	4.691-08	4.89108	4.8411-08	4.848-08	4.84108	4.58E-08
	E	24.13	38.00	34.25	000	35 A.A.	25.13	36.75	34.88	1056
cumulative	poor	340.79	340.81	355.89	36218	18217	384.81	364.82	370.07	36614
:	empaed time	ORRO	9	27300	22580		976		200	22200
	<u> </u>	9 8 9	1820	725	7761	1101	1830	0201	730	1340
	ž	11 /00	00/11	• 6/11 • 6/11	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	07/17	01/11	01/11	71/17	11/11

END OF TEST TSB-13 STACE TWO

ATTACHMENT 3A TSB DATA PLOTS STAGE 1

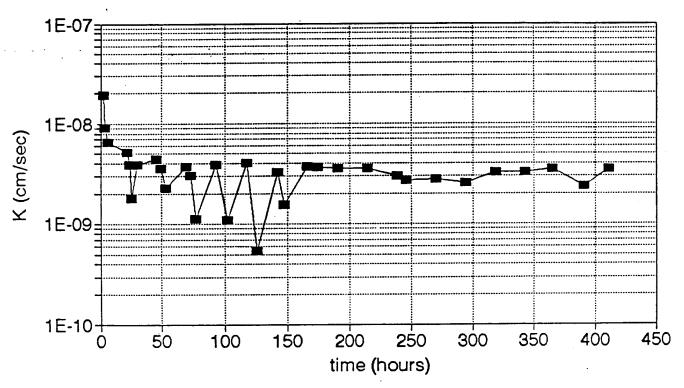

TSB-1 STAGE ONE

t vs. K

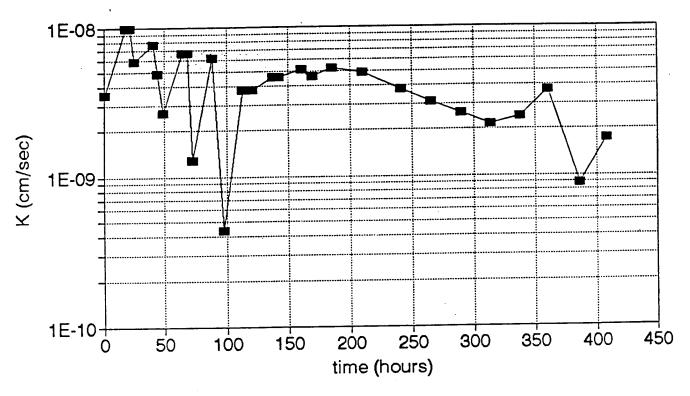

TSB-1 STAGE ONE

t vs. K

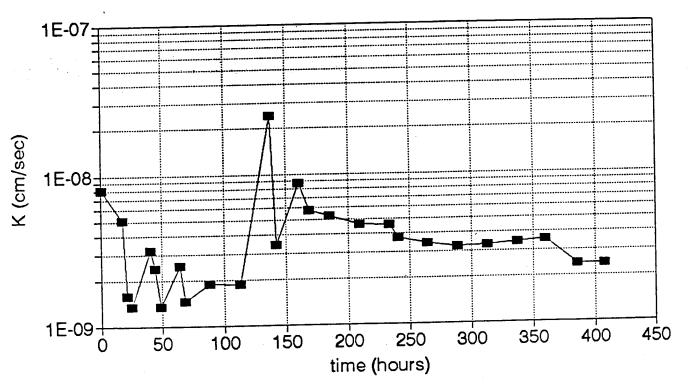
TSB-2 STAGE ONE


t vs. K

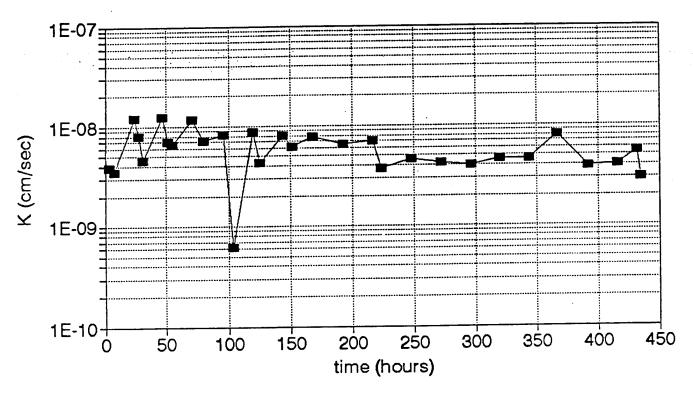
TEMP CORRECTED DATA -- UNCORRECTED DATA


TSB-2 STAGE ONE

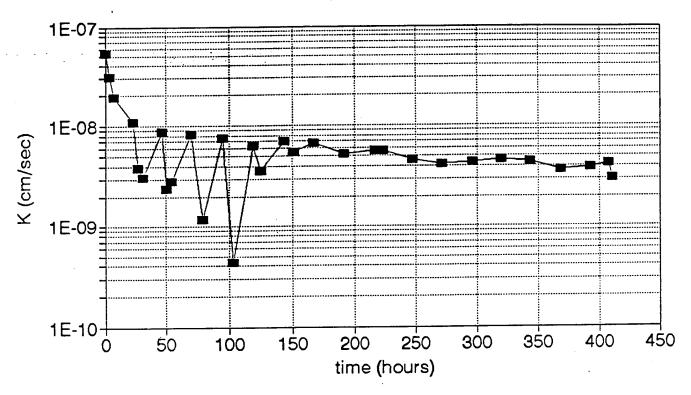
t vs. K


TSB-3 STAGE ONE

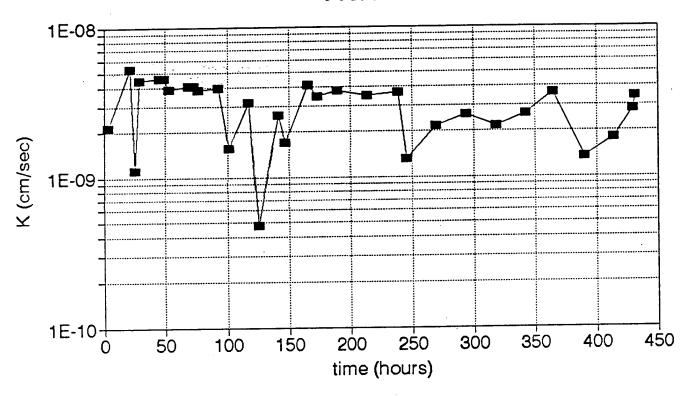
t vs. K


TSB-4 STAGE ONE

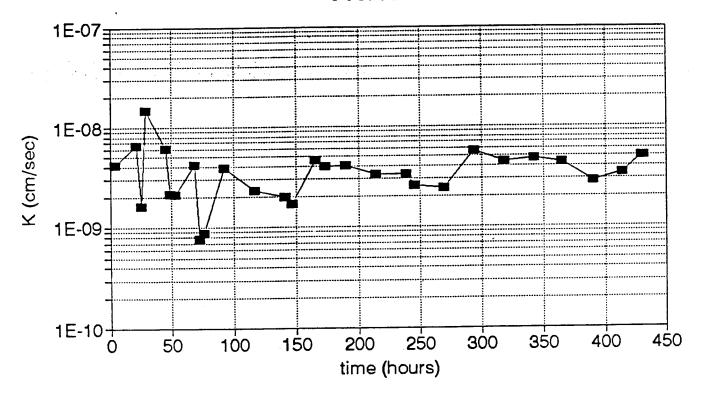
t vs. K


TSB-5 STAGE ONE

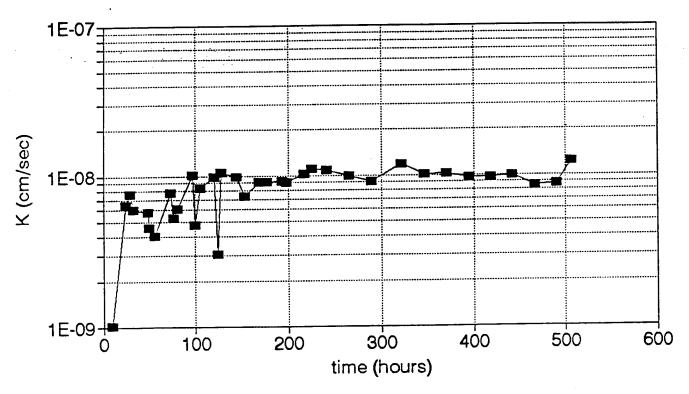
t vs. K


TSB-6 STAGE ONE

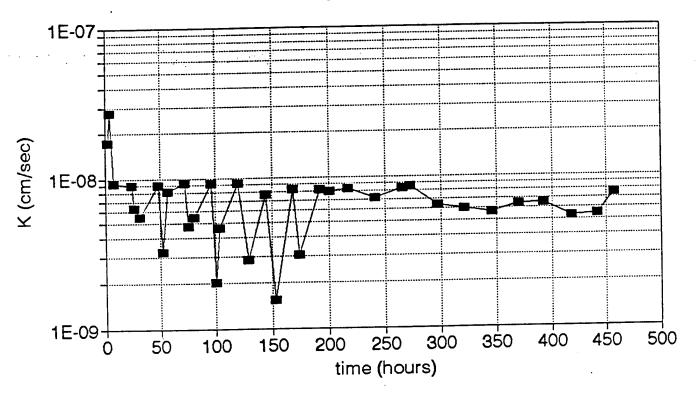
t vs. K


TSB-7 STAGE ONE

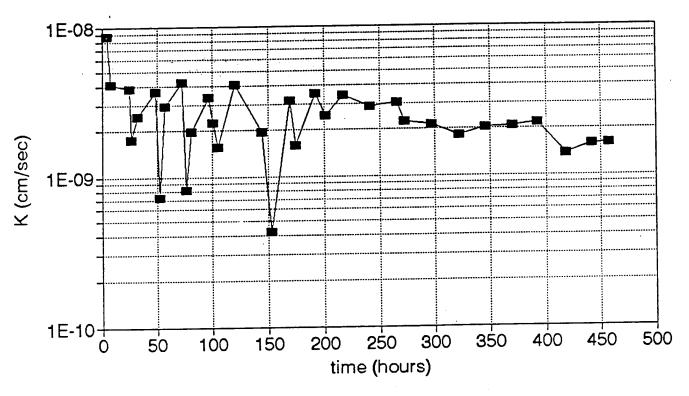
t vs. K


TSB-8 STAGE ONE

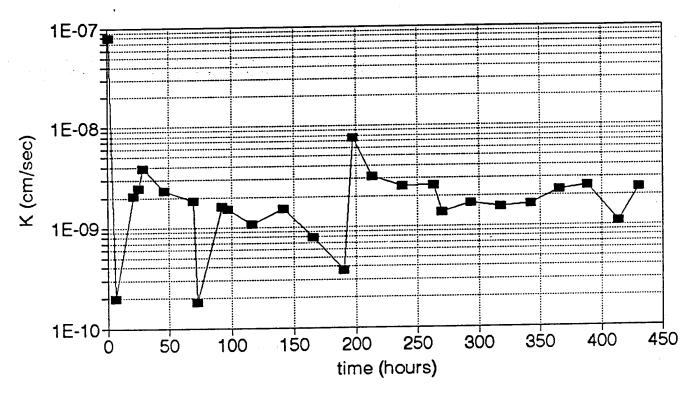
t vs. K


TSB-9 STAGE ONE

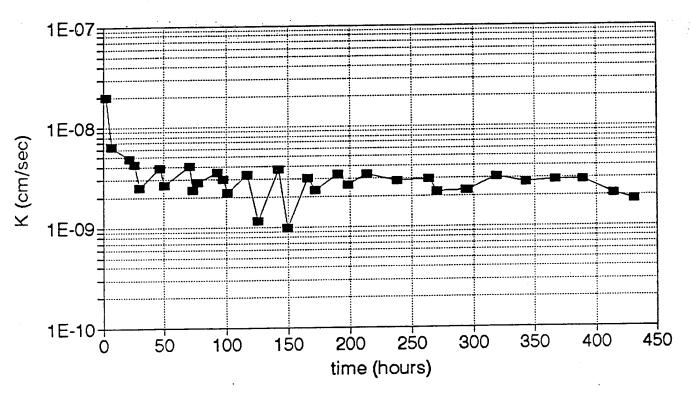
t vs. K


TSB-10 STAGE ONE

t vs. K

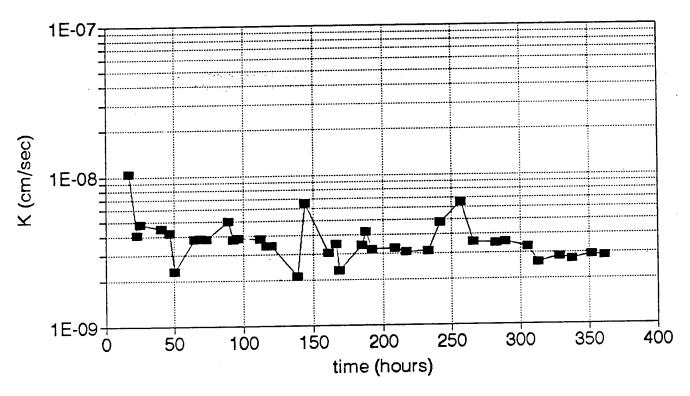

TSB-11 STAGE ONE

t vs. K

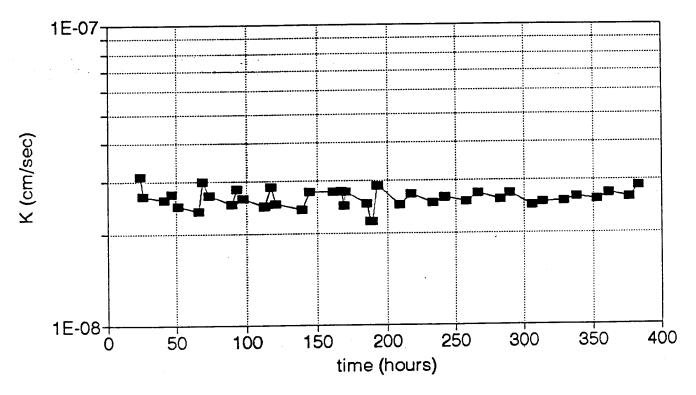

TSB-12 STAGE ONE

t vs. K

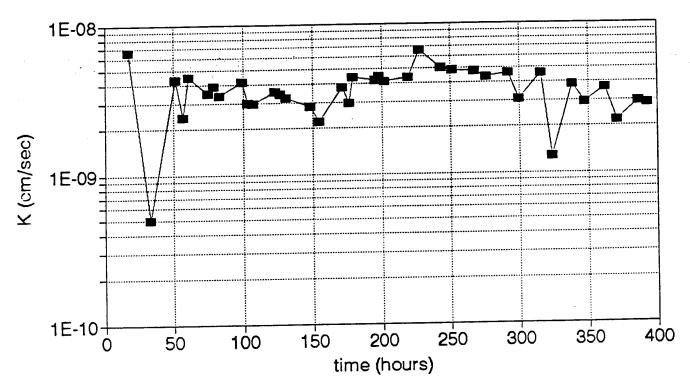
TSB-13 STAGE ONE


t vs. K

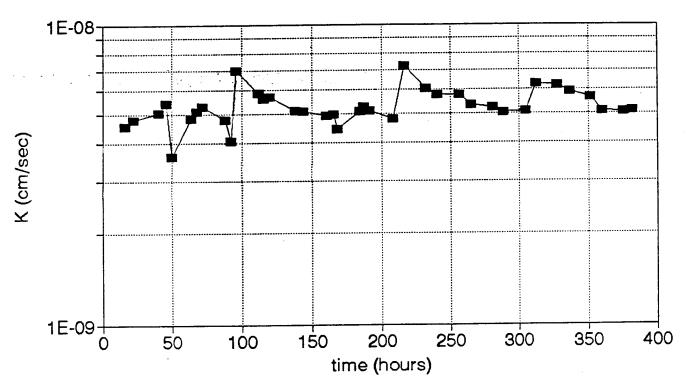
ATTACHMENT 3B TSB DATA PLOTS STAGE 2


TSB-1 STAGE TWO

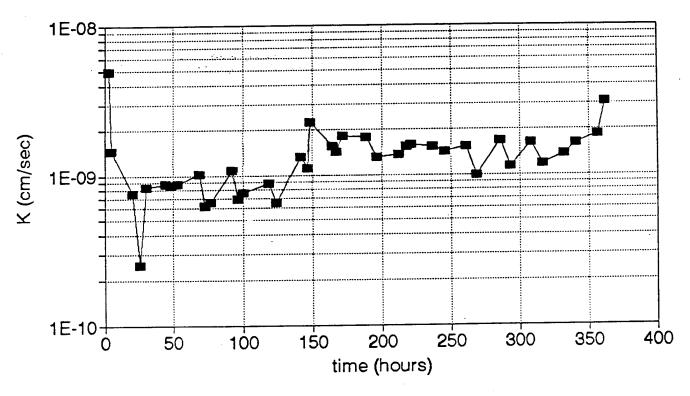
t vs. K


TSB-2 STAGE TWO

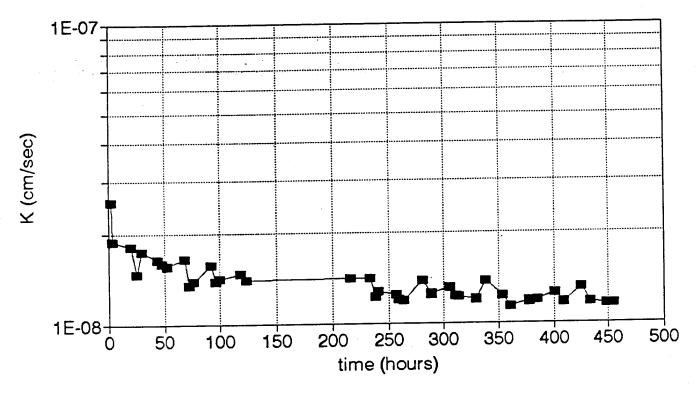
t vs. K


TSB-3 STAGE TWO

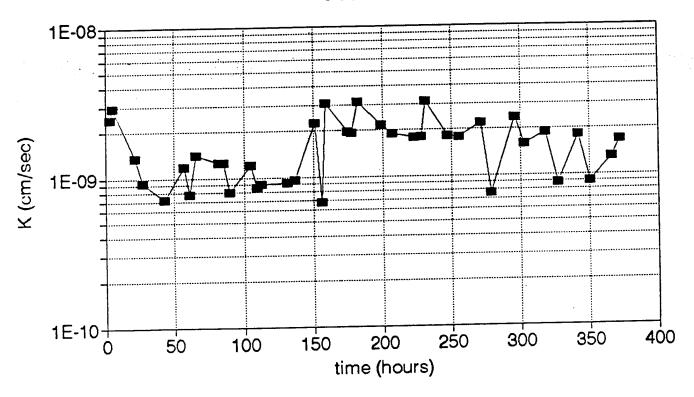
t vs. K


TSB-4 STAGE TWO

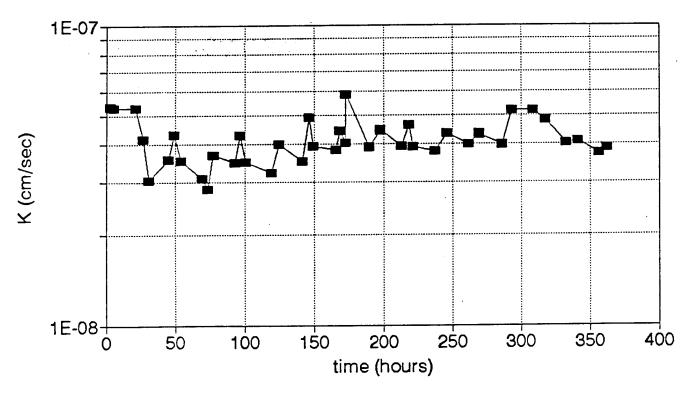
t vs. K


TSB-5 STAGE TWO

t vs. K


TSB-6 STAGE TWO

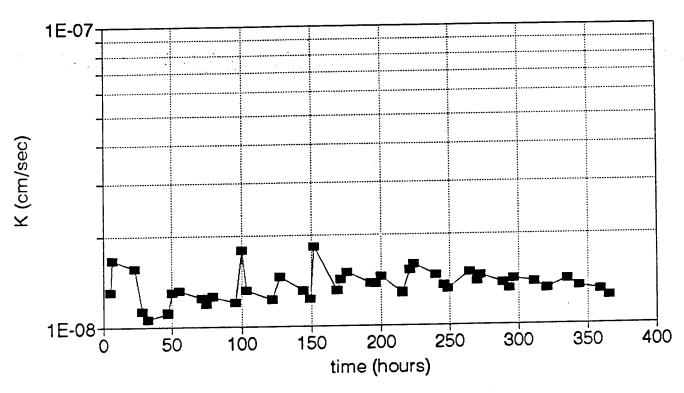
t vs. K


TSB-7 STAGE TWO

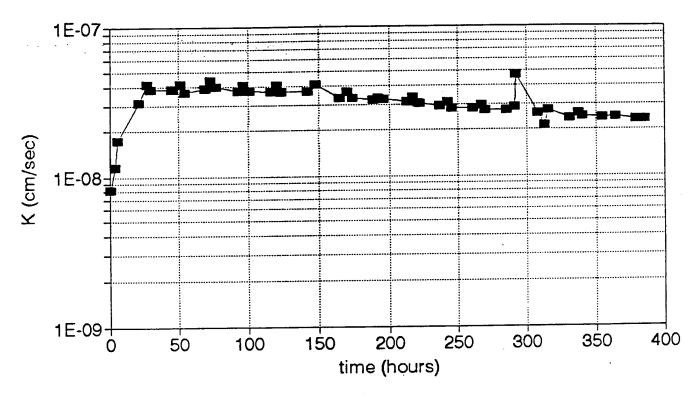
t vs. K

TSB-8 STAGE TWO

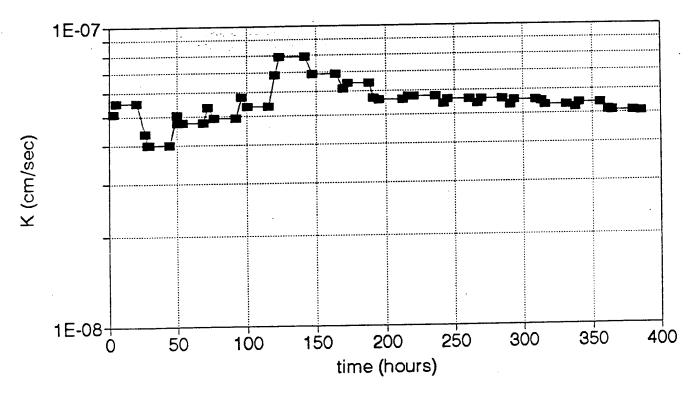
t vs. K


TSB-9 STAGE TWO

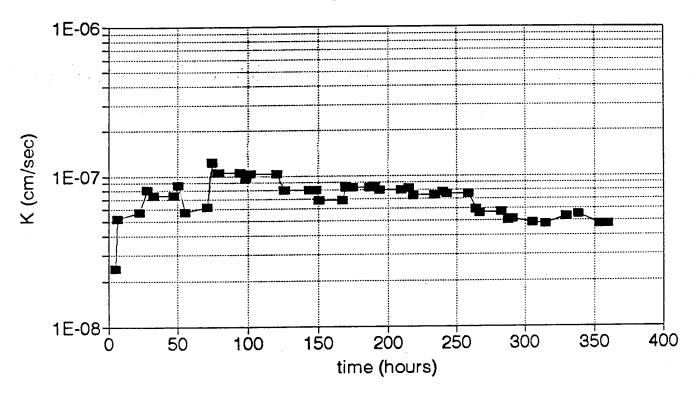
t vs. K


TSB-11 STAGE TWO

t vs. K


TSB-12 STAGE TWO

t vs. K


TSB-13 STAGE TWO

t vs. K

TSB-10 STAGE TWO

t vs. K

ATTACHMENT 4A

TSB CALCULATIONS

TIME-WEIGHTED AVERAGE

HYDRAULIC CONDUCTIVITY

K1'

SUBJECT STAGE ! TSB FINAL VALUES SHEET 1/5 DATE 11-13-92 BY TDC CHKD. DE CONV. JOB NO. 39-10-827-01-903

FROM BAITWELL (1992):

$$K_{I'} = \sum (K_i * T_i) / \sum (T_i)$$

WHERE !

KI' = ARITHMETIC TIME WEIGHTED AVERAGE
HYDRAULIC CONDUCTIVITY (CM/SEC)

TL = TIME DURATION OF TEST INCREMENT

(i) (Sec)

Ki = HYDRAULIC CONDUCTIVITY MEASURED PURING TEST INCREMENT (i) (CIM/SEC) VALUES KCT) (TEMPERATURE CORRECTED

1) USING LAST & MEASUREMENTS FROM [TSE-1 WHERE T; > 10005:

 $KI' = \frac{(4.4E-9 + 86400) + (3.49E-9 + 87900) + (3.38E-9 + 85000)}{86400 + 87900 + 85020 +}$

+ (3.35E-9 + 82560) + (1.84E-9 + 91320,+(1.62E-9+76500)

82560 + 91320 + 76500

= 1.54=-03 = 3.03 E-07 cm/sec 509700

2) USING THE LAST 6 MEASUREMENTS FROM TSB-2 WHERE T. > 1000s

K1' = (2.55E-9*86280) + (3.22E-9 +87660) + (3.25E-9*85140) 86280 + 87660 +85140 +

+(3.47E-9+82500)+(2.37E-9+91380)+(3.51E-9+76200)82500 + 91380 + 76200

1.55E-03/509160 = 3.04E-09 cm/sec

```
SUBJECT STAGE | TSB FINAL VALUES SHEET 2/5

DATE 11-13-92 BY TDC CHKD. Q.S. Comming JOB NO. 3840-827-01-903

3) USING LAST 6 MEASURE MENTS FROM TSB-3:
```

$$KI' = \frac{(2.58E - 9 + 86580) + (2.18E - 9 + 87660) + (2.43E - 9 + 85080)}{86580 + 87660 + 85080}$$

$$\frac{+(3.69E-9*82860)+(8.8E-10*91020)+(1.74E-9*83400)}{+82860+91020+83400}$$

$$= \frac{1.15E - 3}{516600} = 2.23E - 09 cm/sec$$

4) USING LAST 6 MEASUREMENTS FROM TSB-4:

$$K 1' = \frac{(3.22E - 9 * 86520) + (3.32E - 9 * 87660) + (3.42E - 9 * 85200) + (86520 + 87660 + 85200)}{86520 + 87660 + 85200}$$

$$\frac{(5.56E - 9 * 82800) + (2.41E - 9 * 91020) + (2.41E - 9 * 82920)}{4 82800 + 91020 + 82920}$$

$$= \frac{1.57E - 03}{516120} = \frac{3.05E - 09 cm/sec}$$

5) USING LAST 6 MEASUREMENTS FROM TSB-5:
$$KI' = \frac{(+.59E-9*85080)+(8.10E-9*82680)+(3.69E-9*91020)}{85080 + 82680 + 91020}$$

$$+(4.08E-9*87600)+(5.52E-9*56400)+(2.99E-9*11100)$$

$$+87600 + 56400 + 11100$$

$$=\frac{2.10E-03}{413330}=\frac{5.07E-09\,cm/sec}$$

DATE 11-13-92 BY TDC CHKD. OF DEST 3/5

6) USING LAST 6 MEASUREMENTS FROM [TSB-6]: -K1= (4.6E-9+85020)+(4.47E-9+32860)+(3.68E-9+91080)+

85020+ 82860 + 91080

(3.86E-9+87600)+(4.23E-9+56220)+(3.02E-9+12060)+ 87600 + 56220 + 12060

 $= \frac{1.71E-03}{414840} = \frac{4.12E-09cm/sec}$

7) USING LAST & MEASUREMENTS FROM TSB-7:

K1'= (2.635-9+85320)+(361E-9+82620)+(1.35E-9*90960)

85320 + 82620 + 90960

+ (1.79E-9+87600)+(2.81E-9+563+0)+(3.+1E-9+4980) + 87600 + 56340 + 4980

 $= \frac{9.78E - 04}{407820} = \frac{2.40E - 09 cm/sec}{2.40E - 09 cm/sec}$

8) USING LAST 6 MEASUREMENTS FROM TSB-8 WHERE T; > 1000 5:

K1'= (4.36E-9*82260)+(2.82E-9*91320)+(3.42E-9*87540)

82260 + 91320 + 87540

+(4.77E-9+85320)+ (5.03E-9 * 56040)+(5.03E-9 * 5040)

+ 85320+ 56040 + 5040

 $=\frac{1.63E-3}{407520}=\frac{4.00E-09\,\text{cm/sec}}{407520}$

```
SUBJECT STAGE 1 TSB FINAL VALUES SHEET 4/5
         DATE 11-13-92 BY TDC CHKD. J.C. CHKD. J.C. CHKD. J.C. CHKD. J.C. CHKD. J.C. CHKD. J.C. SE40-827-01-403
9) USING LAST 6 MEASUREHENTS FROM [TSB-9] WHERE T; > 10005.
 K1'= (9.63E-9 * 85320) + (9.89 E-9 * 82800) + (8.48E-9* 90900)
                      85320 + 82800 + 90900 +
 +(8.72£-9 + 86100) + (9.56E-9 * 87660 + (1.22E-8 * 57000)
              86100 + 87660 + 57000
= \frac{4.7E-3}{489780} = 9.59E-09 \text{ cm/sec}
10) USING THE LAST 6 MEASUREMENTS FROM TSB-10:
 K1' = (5.66E-9+87660)+(6.4ZE-9+85320)+(6.5E-9+82920)
                    87660 + 85320 + 82920 +
```

$$K/' = \frac{(5.66E-9+87660)+(6.42E-9+85320)+(6.5E-9+82920)}{87660+85320}+(6.5E-9+82920)+(6.6E-9+82920)+(6.6E-9+82$$

1) USING THE LAST 6 MEASUREMENTS FROM [TSB-11]: $KI' = \frac{(2.05E-9*87660)+(2.11E-9*89500)+(2.19E-9*82800)+}{87660} + 85500 + 82800$ $\frac{(1.38E-9*90900)+(1.6E-9*85860)+(1.61E-9*57120)}{90900} + 85860 + 57120$ $= \frac{8.96E-4}{489840} = \frac{1.83E-09 \text{ cm/scc}}{489840}$

SUBJECT STAGE ITSB FINAL VALUES SHELT 5/5

DATE 11-13-92 BY JDC CHKD. SE CONTUJOB NO. 3840-827-01-903

(2) CISING LAST 6 MEASURE NENTS FROM TSB-12 :

K/= (1.55E-9+86160)+(1.64E-9+88200)+(2.23E-9*3+81

B6160 + 88200 + 84840 +

+(2.45E-9*82800) + (1.10E-9* 91260)+(2.36E-9*59580)

82800 + 91260 + 59580

 $= \frac{9.11E-4}{492840} = 1.85E-09 \text{ cm/sec}$

13) USING LAST 6 MEASUREMENTS FROM [TSB-13]: $K = \frac{(3.08E-9*82800)+(268E-9*87960)+(2.86E-9*85020)+}{82800+87960+85020}$

(2.87E-9+82620)+(2.07E-9+91320)+(1.84E-9+59580) 82620 + 91320 + 59530

2.60 E-09 cm/sec = 1.27E-3 489300

ATTACHMENT 4B

TSB CALCULATIONS

TIME-WEIGHTED AVERAGE

HYDRAULIC CONDUCTIVITY

K2

CALCULATION NO. IV

SUBJECT STAGE 2 TSB FINAL VALUES SHEET 1/5

DATE 11-12-92 BY JDC CHKD. 9 & Conoragos NO. 3840-827-01-903

FROM BOUTWELL (1992):

$$KZ' = \sum (K_i \times T_i) / \sum (T_i)$$

WHERE: KZ = ARITHMETIC TIME WEIGHTED AVERAGE

HYDRAULIC CONDUCTIVITY (cm/sec)

Ti = TIME DURATION OF TEST INCREMENT

(i) (sec)

K; = HYDRAULIC CONDUCTIVITY MEASURED DURING TEST INCREMENT (1) (CM/Sec) (TEMPERATURE CORRECTED VALUES-KCT)

1) USING LAST 5 MEASUREMENTS FROM [TS3-1]

K2' = (2.5)E.097. =7,5==+ (2.82 E-09 + 55)20 + (2.73 E-09 + 32,580)

$$+(2.91E-09 \times 543.00) + (2.84E-09 \times 33.040) = \frac{5.63E-04}{200,940}$$

= 2.8E-09 cm/sec

2) USING LAST 6 MEASUREMENTS FROM [TSB-2] WHERE TI > 1000s:

(2.71E-8* 31680)+(2.39E-8+54480)+(286E-8*22080) + 31680 + 54480 + 22080

```
CALC NO I
           SUBJECT STAGE 2 TSB FINAL VALUES SHEET 2/5
           DATE 11-12-92 BY JDC CHKD. 9 & CAMPUJOB NO. 3840-827-01-903
3) USING LAST 6 MEASUREMENTS FROM [TSB 3] =
 K2' = \frac{(3.82-09 \times 55030) + (2.93E-09 + 32460) + (3.66E-09 + 51480) +}{55030 + 32460 + 51480}
           (2.20E-094 31920)+(294E-09*54660)+(2.95E-09*22900)
                          + 31920 + 54660 + 22800
         = \frac{8.01E - 04}{25/400} = \frac{3.19E - 09 \text{ cm/sec}}{25/400}
4) USING LAST 6 MEASUREMENTS FROM TSB-4 !
K2' = (6.20F-09 + 55080) + (5.93E-09 + 32+60) + (5.65E-09 + 54480) + 55080 + 32460 + 54480
          (5.10E-39 x 31920)+(5.06E-09* 5+660)+(5.12E-09* 22300)
                      +31920 + 54660 + 22800
      = 1.4E-03 = 5.56E-09 cm/sec
5) USING LAST 6 VALUES FROM [TSB-5]:
K2' = (1.65 E - 09 * 56280) + (1.19 E - 09 * 31260) + (1.38 E - 09 * 54360 + 56280 + 31260 + 54360 +
      + (1.62E-09 + 31920) + (1.86E-09 + 55930) + (3.05E-09+20940)
31920 + 55980 + 20940
     = \frac{3.13E-4}{250740} = 1.24 E-09 cm/sec
```

4.25E-4 = 1.69 E-09 cm/sec

SUBJECT STAGE 2 TSB FINAL VALUES SHEET 3/5

CALC NO TI

DATE 11-13-92 BY TEC CHKD. 94 Contract JOB NO. 3840-827-01-903

6) USING THE LAST 6 MEASUREMENTS FROM TSB-6 WHERE T; > 10005:

KZ' = (1.25E-8+56280)+(1.17E-8+31260)+(1.31E-08+54240) 56280 + 31260 + 54240 +

+ (1.18E-C8 + 31920) + (1.15E-03 + 55300)+(1.16E-03 + 21/20) 31920 + 55800 + 21/20

$$= \frac{3.04E-3}{250620} = \frac{1.21E-08cm/sec}{}$$

7) USING THE LAST & MEASUREMENTS FROM [TSB-7]:

 $K2' = \frac{(1.90E-9*55680)+(8.84E-10*31920)+(1.82E-09*54300)+}{55680+31920+54300}$

(8,92E-10 + 31860) + (1,30E-09 + 55200) + (1.69E-9+21720

+ 31860 + 55200 + 21720

$$= 3.7E-04 = [1.47E-09 cm/sec]$$
250680

8) USING LAST 6 MEASUREMENTS FROM [TSB 8] WHERE TI > 10005:

(4.1E-8+31800)+(375E-8+55140)+(3.9E-8+21660) + 31800 + 55/40 + 21660

 $= \frac{1.08E-2}{250440} = \frac{4.33E-08 \text{ cm/sec}}{250440}$

```
CALC NO IV
          SUBJECT STAGE 2 TSB FINAL VALUES SHEET 4/5
          DATE 11-13-92 BY JDC CHKD. DE. CONSUL JOB NO. 3840-827-01-963
9) USING THE LAST 6 MEASUREMENTS FROM [TSB-9] WHERE T; > 1000s
 K2' = (1.79E-7+54060)+(1.56E-7*217B0)+ (1.63E-7*10140)+
                   54060 + 21780 + 10140
    (1.63E-7 + 54060)+ (1.61E-7 + 6180) + (1.62E-7 + 16560)
        + 54060 + 6180 + 16560
= \frac{2.72E-2}{162780} = \frac{1.67E-07 \text{ cm/sec}}{1}
10)USING LAST 6 MEASUREMENTS FROM TSB-10 NHERE T; > 1000s:
K2' = \frac{(4.89E - 8 + 54360) + (4.75E - 8 + 33000) + (5.34E - 8 + 54000) + }{54360 + 33000 + 54000}
     (5.52E-8 + 32100) + (4.78E-8 + 54060) + (4.73E-8 * 22920)
             + 32100 + 54060 + 22920
 = \frac{1.25E-2}{250440} = \frac{5.01E-8cm/sec}{250440}
11) USING THE LAST & MEASUREMENTS FROM [TSB-11]:
K2' = \frac{(1.38E-8+54480)+(1.32E-8+33060)+(1.41E-8+54000)+}{54480+33060+54000}
        (1.34E-8* 32100) + (1.30E-8* 54120)+(1.24E-8* 22920)
            + 32/00 + 54/20 + 22920
```

 $= \frac{3.37E-3}{250680} = \frac{1.34E-08 \, \text{cm/sec}}{250680}$

CALE NO IZ

SUBJECT STAGE 2 TSB FINAL VALUES SHEET 5/5

DATE 1-13-92 BY JDC CHKD. Q & COMMON JOB NO. 3840-827-01-90;

12) USING THE LAST 6 MEASUREMENTS FROM 7513 12 WHERE TI> 1000-

$$K2' = \frac{(2.58E-8*22860)+(2.47E-8*9660)+(2.42E-8*54180)}{22,860+9660+54180}$$

$$=\frac{4.74E-03}{195480}$$
 = $[2.42E-08 \text{ cm/sec}]$

13) USING THE LAST 6 MEASUREMENTS FROM TSB-13 WHERE TI > 10005.

$$K2' = \frac{(5.43E-8*9660)+(5.42E-8*54300)+(5.13E-8*22560)}{9660+54300+22560}$$

$$=\frac{9.01E-03}{172740} = 5.22E-08 cm/sec$$

ATTACHMENT 5 SPREADSHEET CALCULATION SUMMARY Kh AND Kv

TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST STAGE ONE and STAGE TWO DATA REDUCTION HYDRAULIC PROPERTIES OF UNDISTURBED SOILS and CALCULATION of Kv and Kh VALUES WSSRAP SUPPORTING STUDY 3A -

Best Kh & Kv	11.1289	0.64E-09	7.76E-10	3.3360	6.75	:	20.1544	5.22E-08	2.59E-09	1SB-13
:	7883.3977	2.30E-07	2.92E-11	88.7885	6.75	_	20.1544	5.22E-08	2.59E-09	1SB-13
best Kin & Kv	0.5491	1.37E-09	2.50E-09	0.7410	6.38	::	13.0811	2.42E-08	1.85E-09	1SB-12
	1.3136	2.12E-09	1.61E-09	1.1470	6.38	:	13.0611	2.42E-08	1.85E-09	TSB-12
	2927.7268	1.00E-07	3.42E-11	54.0530	6.38	_	13.0811	2.42E-08	1.85E-09	1813-12
Best Kin & Kv	6821.11	6.108-09	5.49E-10	3.3360	6.00	ŧ	7.3224	1.34E-08	1.83E-09	179-11
;	724.3634	4.93E-08	6.80E-11	26.9140	6.00	_	7.3224	1.34E-08	1.83E-09	7SB-11
Best Kh & Kv	0.5491	4.49E-09	8.18E-09	0.7410	5.88	::	8.2673	5.01E-08	6.06E-09	01-8SL
	1015.1552	1.93E-07	1.90E-10	31.8615	5.88		8.2673	5.01E-08	6.06E-09	TSB-10
Best Kh & Kv	1.3156	1.10E-08	8.36E-09	1.1470	5.75	:	17.4140	1.67E-07	9.59E-09	12B-09
; ;	6731.4641	7.87E-07	1.17E-10	82.0455	5.75	_	17.4140	1.67E-07	9.59E-09	TSB-09
Best Kh & Kv	11.1289	1.33E-08	1.20E-09	3.3360	6.25	:	10.8250	4.33E-08	4.00E-09	1SD-08
	1867.1300	1.73E-07	9.26E-11	43.2103	6.25	_	10.8250	4.33E-08	4.00E-09	TSB-08
	4.2560	4.95E-09	1.16E-09	2.0630	5.88	20	0.6167	1.48E-09	2.40E-09	TSB-07
Best Kin & Kv	1.3156	2.75E-09	2.09E-09	1.1470	5.88	10	0.6167	1.48E-09	2.40E-09	TSB-07
Best Kin & Kv	11.1289	1.37E-08	1.24E-09	3.3360	6.88	:	2.9369	1.21E-08	4.12E-09	TSB-06
;	46.3216	2.80E-08	6.05E-10	6.8060	6.88	_	2.9369	1.21E-08	4.12E-09	TSB-06
	11.1289	1.69E-08	1.52E-09	3.3360	6.00	:	0.3333	1.69E-09	5.07E-09	TSB-05
	11.1289	1.02E-08	9.14E-10	3.3360	6.13	_	1.8230	5.56E-09	3.05E-09	TSB-04
	4.2271	4.58E-09	1.086-09	2.0560	6.38	_	1.4305	3.19E-09	2.23E-09	TSB-03
Best Kli & Kv	11.1289	1.01E-08	9.11E-10	3.3360	6.25	:	8.4868	2.58E-08	3.04E-09	TSB-02
:	942.8277	9.33E-08	9.90E-11	30.7055	6.25	-	8.4868	2.58E-08	3.04E-09	TSB-02
	0.9906	3.02E-09	3.04E-09	0.9953	6.00	8	0.9241	2.808-09	3.03E-09	1SB-01
Best Klu & Kv	0.5491	2.25E-09	4.09E-09	0.7410	6.00	-	0.9241	2.00E-09	3.03E-09	10-6SL
Kh/Kv Connuents	Klı/Kv	KL		m,	(inches)	F.	K2:/K1'	(cm/sec)	(cm/sec)	NOTIVITY OSL
	:	i	:		_			ফ্	KI.	

<sup>Values for p from Table on Page 21 (Boutwell, 1992)
From FURTKAN Program which solves for the given K2'/K1' using selected values for in
m value for these TSBs is from TSB-04, closest TSB in depth and unit tested, with a < 20 kli/Kv ratio.
m value for these TSBs is from TSB-07.</sup>

^{****} m value for this TSB is from TSB-01.

ATTACHMENT 6 TSB METHOD REFERENCE

THE STEI TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST

by: Gordon P. Boutwell, PhD, P.E.

Presented to

"CONTAINMENT LINER TECHNOLOGY AND SUBTITLE D"

Seminar Sponsored by Geotechnical Committee Houston Branch, ASCE

Houston, Texas - March 12, 1992

THE STEI TWO-STAGE BOREHOLE FIELD PERMEABILITY TEST

by: Gordon P. Boutwell, PhD, P.E.

Presented to

CONTAINMENT LINER TECHNOLOGY AND SUBTITLE D'

Seminar Sponsored by

Geotechnical Committee

Houston Branch, ASCE

Houston, Texas - March 12, 1992

SYNOPSIS

In 1991, the Texas Department of Health began requiring field verification of the hydraulic conductivity for the waste-retention barriers under its jurisdiction. The TDH has approved two procedures: the Two-Stage Borehole (TSB) method and the Sealed, Double-Ring Infiltrometer (SDRI) method. The TSB method is discussed herein.

It is a falling-head infiltration test conducted in a cased borehole, typically 4 inches in diameter. The first stage is performed with the bottom of the hole flush with the bottom of the casing for maximum effect of vertical permeability (k_v). After steady-state is achieved, the hole is advanced some 6 to 8 inches below the bottom of the casing so that horizontal permeability (k_h) has a greater effect. The two stages yield the following:

Stage 1 - The maximum possible value for (k_v) . Stage 2 - The minimum possible value for (k_h) .

Stage 1 + Stage 2 - Constants for two equations which can then be solved for the real (k_h, k_v) .

Procedures are available for reduction of the data in the cases of both above and below water table testing, and for the bottom boundary conditions of a material far more permeable, equally permeable, or far less permeable than the medium being tested. The test has been successful in evaluating both compacted and natural materials with permeabilities as low as 1x10(-9) cm/sec.

The major test precautions include proper sealing of the casing along the outside, accounting for temperature effects, and correcting for sidewall smear during the second stage. The test is quick, simple, and relatively inexpensive. It allows results in days, rather than months. Multiple installations are feasible so that statistical confidence can be achieved. It is recognized in the literature, including U.S. EPA publications, and accepted by many State regulatory authorities.

I. INTRODUCTION

Clay barriers are an important component of waste retention structures. Their primary geotechnical characteristic for this use is hydraulic conductivity, which must be verified during the Construction Quality Assurance program. Until recently, practice relied on laboratory testing of small (7 to 10 cm diameter) undisturbed samples taken from the barrier or a similarly constructed test pad. Day and Daniel (1985) reported conductivities measured in the field which were 3 to 4 orders of magnitude higher than they obtained with laboratory tests. While that study was justly criticized, the horse was out of the barn and regulators all over the country galloped into field testing for hydraulic conductivity evaluation at waste facilities.

From the regulatory standpoint, a test procedure should be accurate and avoid false positives, i.e., not indicate compliance with the specified conductivity when the liner or pad truly has a higher value. This normally means testing a large soil volume searching for the elusive "macropores" which are thought to evade, somehow, even numerous laboratory tests. The regulated community wants the accuracy and avoidance of false positives for their own protection, but also wants to minimize testing times (and costs), and to avoid false negatives, both for economy.

In about the last two years, two methods have become accepted as meeting these criteria to a satisfactory degree: the Sealed, Double-Ring Infiltrometer (SDRI) and the Two-Stage Borehole (TSB) procedure. Each has its stronger and weaker points (see Daniel, 1989).

II. BASIC CONCEPTS

The vertical conductivity (k_v) governs flow, even in sidewall liners if built in the preferred manner: lifts parallel to the slope. However, the horizontal conductivity (k_h) is greater than the vertical. All field tests are affected by this anisotropy, unless flow in the horizontal direction is artificially blocked; the effect is to increase the test conductivity by factors of 2 to 5 over the real (k_v) value. Equations for flow from various source geometries in a cross-anisotropic medium are available in Hvorslev (1951). However, each equation has two unknowns: (k_v) and $(m^2 = k_h/k_v)$.

The TSB procedure combines four old concepts into one new idea to find (k_v) . The field procedure is taken from long-established US Bureau of Reclamation methods: their flush-bottom borehole test (E-18) and borehole packer test (E-19). Computations are based on the Hvorslev equations adapted for various bottom boundary conditions by the three-dimensional Image Potential Technique (Carslaw and Jaeger, 1959). The new idea is performing both USBR tests in the same borehole, yielding two equations which can be solved for the two unknowns, (k_h) and (k_v) .

The TSB is a field infiltration test, conducted in a cased borehole so that the geometry of the infiltrating zone can be controlled. It is normally conducted as a falling-head test. The basic idea is to vary the geometry of the infiltrating area so as to vary the relative effects of (k_h) and (k_v) . In the first stage, the geometry is chosen so that (k_v) has its maximum effect. The second stage geometry is such that (k_h) has its maximum effect. The results of the two stages yield two equations in two unknowns (k_h, k_v) , which can then be solved. This

Stage 1 is normally conducted using a flat bottom flush with the base of the casing. Infiltration proceeds until a steady-state flow condition is achieved. Then, the borehole is advanced some 1.5 to 2 casing diameters (6 to 8 inches) below the bottom of the casing. The apparatus is refilled, and infiltration in this Stage 2 continues until it achieves steady-state flow.

During the test, the soil is assumed isotropic $(k_v = k_h)$. Stage 1 then yields an apparent permeability (K1), and Stage 2 a different value (K2). The unknown ratio (k_h/k_v) is a unique function of the known test geometry and the known test ratio (K2/K1). When the former is determined, the real (k_v, k_h) can be computed from (K1) or (K2).

III. FIELD PROCEDURES

As is the case with virtually all field tests, and especially field permeability tests, the field procedures are of paramount importance. The most diligent office analyses cannot overcome all of the problems resulting from improper installation, inadequate monitoring, premature test termination, and the like.

3.1 Test Program Design. The test program should be designed to meet the conditions assumed in deriving the data reduction equations so that meaningful results can be obtained.

3.1.1 Vertical Boundaries. Certain clearances are required between the infiltrating surface and any boundaries, pervious or impervious. These can be summarized as:

- a. Minimum casing embedment below ground surface = 2.5D (Prevents uplift, minimizes hydraulic fracturing)
- b. Minimum thickness of tested material below bottom of Stage 2= 20D (Avoids violating boundary conditions of equations)
- c. Minimum recommended Stage 2 extension = 1.5D

 (Avoids theoretical problems at finite but small L/D)

D = Casing inside diameter

L = Length of Stage 2 extension

3.1.2 Horizontal Spacings. It is intuitively obvious that the tests must be spaced "far enough" apart so that their flows do not interfere with each other causing a falsely low permeability. Also, the presence of a drainage boundary (such as the edge of a test pad) which is "too close" to the test will increase the flow, yielding a falsely high permeability.

This can be avoided by maintaining at least the following clearances:

a. Minimum horizontal distance between tests = 30D
 b. Minimum horizontal distance to free surface = 30D

3.1.3 Number and Size of Tests. The number of tests required for evaluation depends on the project, the acceptance criteria, and the variability of the stratum/fill being evaluated. As in virtually any other geotechnical testing, "the bigger the better".

However, the general practice has been to use 4-inch (ID) tests, with 5 tests for the typical liner or test pad.

The scale effect, if any, of test size has not been fully researched. Virtually all of the known tests have been conducted using 4-inch (10 cm) ID casings. These tests typically permeate a volume of some 0.4 - 1.1 cubic feet each, or 2 to 5 cubic feet for a 5-test group. Benson (pers. comm., 1991) indicates that the minimum representative volume for a permeability determination is on the order of 0.5 - 1.0 cubic foot. This is about the volume permeated by a typical TSB test.

3.1.4 Other Details. There are a few other details in test planning which should be considered. Among these are:

- a. Protect the test area surface from desiccation, usually with clear or white plastic.

 (Avoids heat-induced problems).
- b. Use a "sock" to prevent collapse of the Stage 2 open hole in susceptible materials. The sock is a rigid cylinder of open-mesh plastic, lined with a filter geofabric. The cylinder is somewhat smaller in diameter than the casing ID (and thus the Stage 2 hole), and an inch or so longer than the extension for Stage 2. It is fitted with retrieving lines and not left in the hole after the test.
- c. Minimize the distance (R₂) from the ground surface to the bottom of the measuring scale, especially for shallow tests. This also aids in having the longest possible reading time between standpipe refills and avoiding hydraulic fracturing.
- d. Match the standpipe size to the flow rate so that accuracy is achieved but overnight readings are possible. For a 4-inch casing, this usually means a 0.5 0.75 inch ID standpipe.
- 3.2 Permeameter Installation. Proper installation and checking the permeameters are vital to obtaining a valid test. Various field techniques have been developed through experience which minimize problems. These techniques are discussed in this section.
 - 3.2.1 Permeameter. A typical permeameter is illustrated on Figure 2. The apparatus is simple; the permeameter can be assembled with a visit to a water-well driller and a hardware store. The elements for a falling-head system are:
 - a. <u>Casing</u>. Typically 4-inch ID Schedule 40 PVC monitoring well pipe, flush-threaded, with "O"-Ring joint. Other casings can be used.
 - b. <u>Cap.</u> To fit casing, preferably domed, and drilled and/or tapped to receive the standpipe apparatus.
 - c. <u>Standpipe</u>. Clear Schedule 40 PVC or acrylic tube, 0.5 to 1.0 inch ID, with scale. Include elbow with cover (having air-vent) to prevent rain entry and minimize evaporation.
 - d. Fittings. The small fittings necessary to assemble the apparatus.

All joints which are not glued are assembled with PTFE Plumber's Tape and silicone grease (not sealant).

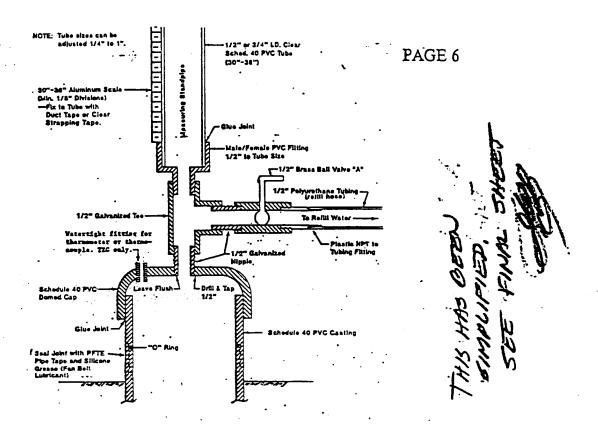


FIGURE 2 TYPICAL PERMEAMETER

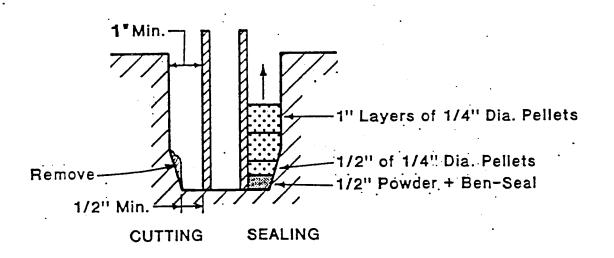


FIGURE 3 SEALING PROCEDURE

3.2.2 Borehole. The casing is set into a borehole. The holes have been drilled using rigs, power-operated hand equipment, and hand augers. The device depends on depth and hardness of material. The hole must have a large enough diameter to allow sealing the annular space between the borehole wall and the casing. Also, it must not disturb the soils below the casing bottom. The bottom must also be flat. Experience has shown the following to be acceptable:

- - - - -

- a. Borehole diameter at least 2 inches greater than the casing OD. (To allow sealant to reach the bottom and for tamping).
- b. Stop point of auger about 1 inch above proposed casing bottom.

 (To avoid testing in a disturbed material)
- c. Ream bottom of borehole to final depth with a flat auger.

The bottom of the borehole should be flat and flush with the bottom of the casing in order to correspond with Hvorslev's (or H-I) Case "B" or "C" for Stage 1.

- 3.2.3 Sealing. This is the single most important step in installation. A poorly sealed test cannot be salvaged. The annular space between the casing and the wall of the borehole is sealed with bentonite. Best results have been attained using 1/4" (not 3/8" or larger) bentonite pellets or crushed bentonite (Baroid "Hole-Plug" or equivalent). The procedure, illustrated on Figure 3, is:
 - a. Crush sufficient pellets, "Ben-Seal", or "Hole-Plug" to fill about 1/2 inch of the annulus. This should have about 1/16" size fragments with some powder.
 - b. Place this material into the annular space.
 - c. Place about 1/2 inch of bentonite pellets or "Hole-Plug" into hole,
 - d. Tamp the bentonite pellets or "Hole Plug",
 - e. Add water until it shows above the bentonite,
 - f. Repeat the process (but using only the pellets or "Hole Plug") in 1 inch increments to the ground surface or a minimum of 6D above the casing bottom, whichever occurs first. Grouting above the 6D level is allowable.
 - g. Allow the bentonite (and grout) to hydrate at least overnight.

5.

The casing must be steadied to prevent lateral motion while sealing. The bentonite seal is then allowed to hydrate overnight before any head is applied to the system.

- 3.2.4 Advancing for Stage 2. Upon completion of Stage 1, a borehole is advanced below the bottom of the casing to form the cylindrical infiltrating surface for Stage 2. The important points are:
 - a. Do not disturb the casing that can affect the seal.
 - b. Borehole diameter should equal casing ID.
 - c. Stop point of auger about 1 inch above proposed Stage 2 bottom. Ream flat and measure depth.
 - d. Roughen the sidewalls to minimize smear.

This portion of the work is normally handled with hand equipment. The first step after removing the cap is to empty the casing of water (tests above groundwater level or where no seepage was noted during Stage 1 drilling and/or sealing). It is frequently useful to obtain an undisturbed sample during this process, using ASTM D2937 or D1587. However, undisturbed sampling should not be performed if the material being tested contains gravel-sized particles; they can disturb the sidewalls during the push or driving. After or in lieu of undisturbed sampling, the boring is augered until the point of the auger is about 1 inch above the desired bottom for Stage 2. The auger should be at least 1/2 inch in diameter smaller than the casing ID. The boring is then completed to depth and diameter with a flat-bottomed reamer.

The reamer is designed to minimize sidewall smear, having full casing ID only at the cutting edge. The sidewalls are then roughened with a wire brush or similar device, a procedure also recommended in USBR E-18. This step must not be omitted, since one of the significant problems encountered in Two-Stage testing has been artificially low values for Stage 2 due to smear. Equations to handle smear are included herein, but require some idea of the degree of smear.

After the borehole is completed and cleaned of cuttings, the depth is measured so that the correct length of the Stage 2 cylinder is known. For a typical test, a 1-inch depth error will yield the wrong Stage 2 permeability value by 7 to 8%. The cap is then reseated, and Stage 2 begins.

3.3 Ambient Condition Effects. Temperature changes cause the dominant effects of ambient conditions on this test, although there may be some contribution from barometric pressure changes. Temperature changes affect the test by:

- * Volumetric changes in the water and apparatus.
- * Viscosity changes with temperature.
- Freezing the test water.

The procedures for overcoming these effects are given below.

3.3.1 Volumetric Effects (TEG). At slow rates of flow, the field readings are affected by temperature, as has been noted on many such projects. Rising temperature causes the water column in the pressure/measurement standpipe to expand, so that the drop in water level is less than flow alone would produce. The net effect is a lower apparent permeability. Conversely, falling temperature produces a higher apparent permeability. A normal day's temperature variations can easily cause a 0.5 to 1 order of magnitude change in the apparent permeability of low-permeability materials.

Therefore, a complete "dummy" test setup is installed but with the <u>bottom</u> of the casing sealed with a cap which is normally glued on and pressure-tested. This dummy, or temperature effect gauge (TEG) is of the same construction and embedded to the same depth as the regular test setups. Since there is no flow from the TEG, any change in its readings must be due to changes in the ambient conditions (temperature and/or barometric pressure). Such changes would affect the regular test setups to exactly the same degree.

This correction is applied to the regular tests by:

- Reading the TEG at the same times as readings are taken on the regular tests.
- Determining any increase (decrease) in water levels in the TEG between regular test readings.
- * Subtracting any increase (adding any decrease) at the TEG from the readings at the regular tests for the ends of the same time increments.
- 3.3.2 Viscosity Effects of Temperature. Permeability is normally reported as the value for water at 20°C (68°F). The density and viscosity of liquids, including water, are affected by temperature. The effect on permeability is in direct ratio to the kinematic viscosity (U), which is the viscosity divided by the density. The kinematic viscosity decreases at higher temperatures. The net effect is that the apparent permeability is greater than the 68°F value at low temperatures. The reverse occurs with decreasing temperatures. The effects for ordinary conditions can be from -50% to +15% on the permeability value. The normal correction to the standard condition is given in ASTM D5084:

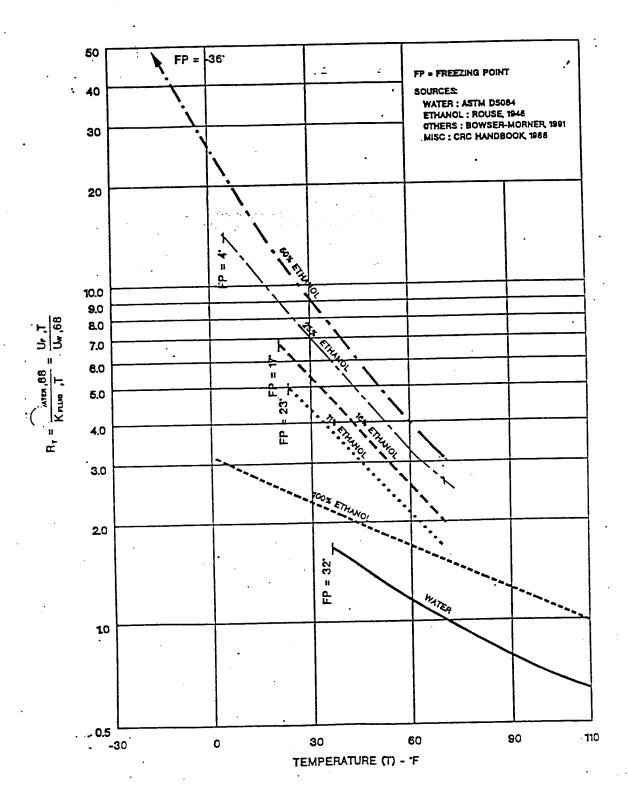


FIGURE 4
KINEMATIC VISCOSITY FACTORS

$$k_{r}/k_{T} = R_{T} = U_{T}/U_{s}$$
 (3.3.-1)

where:

= Permeability for water at 68°F = Permeability observed in test

R_T = Correction Factor

= Kinematic viscosity for test fluid at test temperature

= Kinematic viscosity for water at 68°F

The factors (R_T) are given for water at temperatures between freezing and 120°F (0 to 49°C) in ASTM D5084. See also Figure 4 which reproduces that data.

The temperature of the exfiltrating water is measured by a thermometer or thermocouple in the TEG. It should extend to roughly the bottom of the casing. The thermometer or the leads for the thermocouple should have its own (sealed) port into the TEG cap or casing. Running either through the TEG standpipe could easily affect its function of volumetric correction.

- 3.3.3 Freezing Conditions. Unfortunately, field testing must sometimes proceed when the air temperatures are below freezing. Landfill operators often complete a test pad in late fall, so that they will have approval from the regulators for construction in the spring. Even if the ground temperatures stay above freezing, one cannot get decent readings from a frozen standpipe. Three procedures have been used:
 - Insulate the exposed test equipment, exposing only to make readings. а. (Only if mean daily air temperature exceeds freezing)
 - Use an antifreeze. b. (Ethanol as Vodka is good, but needs its own R_T vs temperature graph. Does not attack clay at 25% or less alcohol).
 - Heat the test units. c. (Potential for different temperatures - can invalidate the TEG).
- 3.4 Conducting the Test. The following discussion is applicable to both Stage 1 and Stage 2. Basically, the procedure is:
 - Fill and assemble permeameters. a. (Use PTFE tape and silicone grease. Pour slowly to avoid bottom erosion).

- b. Read standpipe levels over time at the permeameter, plus level and temperature at the TEG.

 (Levels: to 1/16", temperature to 1°F).
- c. Convert these readings to apparent permeabilities.
- d. Continue the test until these permeabilities remain steady.

3.5 Field Calculations - Apparent Permeability. The data from each reading is converted into an apparent permeability, termed (K1) for Stage 1 and (K2) for Stage 2. Keeping up with the data in terms of a permeability has a physical meaning, and also yields a better "feel" for the behavior of the medium being tested. If that medium were isotropic $(k_h = k_v)$, then (K1,K2) would be "the" permeability. Remember that the objective of most field permeability tests on regulated facilities is to determine that the vertical permeability (k_v) of the liner is not greater than some value, usually 1x10(-7) cm/sec, or to show that the horizontal permeability (k_h) of a drainage material is not less than some value, typically 1x10(-2) cm/sec. It can be shown that (K1) is the maximum possible value for (k_v) and that (K2) is the minimum possible value for (k_h) . Hence, using these apparent permeabilities (K1,K2) frequently allows "pass-or-fail" determination early in the testing process. For example, (K1 < Spec) within 24 hours in 90% of tests where $(k_v/Spec < 0.6)$, and 70% of all tests.

The equations for both Stage 1 and Stage 2 follow the generic falling-head test format:

$$k = R_T G Ln(H_1/H_2)/(t_2-t_1)$$
 (3.5-1)

where:

k = Permeability

 $H_1 = Initial head (at t=t_1)$

 H_2 = Final head (at $t=t_2$)

 $t_1 = Initial time$ $t_2 = Final time$

G = Geometric Constant, depends on test geometry

R_T = Kinematic viscosity correction to water at 68°F

In both Stages, the head is taken as the distance from the level in the standpipe to the groundwater level. The distance from the bottom of the casing to the groundwater level is limited for calculation purposes (only) to no more than 20 times the casing ID. If the depth to groundwater is less than 20 times the casing ID, the true depth is used in the calculations. However, where the depth to groundwater exceeds this criterion, it is considered to be at this 20-diameter depth in the calculations. This limitation is derived by 3-dimensional analogy with the two-dimensional "effective radius" of a well. The volumetric effects of temperature are accounted for using a corrected final head, replacing (H₂) by (H₂'), where:

$$H_2' = H_2 - c$$
 (3.5-2)

where: c = Increase in TEG standpipe water level during time period from t₁ to t₂

If the TEG standpipe water level goes up between readings, (c) is positive and $(H_2' < H_2)$. Conversely, (c) is negative and $(H_2' > H_2)$ if the TEG standpipe level drops between readings. This step is not theoretically precise, but is close enough for test purposes. The theoretical solution yields a complex implicit equation in which the true permeability is a function of its own logarithm. However, for the geometry of the test setups and the observed magnitudes of increases/decreases, the apparent permeabilities calculated in this manner differ from the true permeabilities by no more than 2 to 5 percent. The net result is to "smooth" the apparent permeabilities. This smoothing is most apparent (and most useful) when the soil's apparent permeability is less than about 2 to 5x10(-7) cm/sec and especially for small-diameter standpipes.

The kinematic viscosity factor (R_T) used in the calculation is that for the <u>average</u> test water temperature during the period from (t_1) to (t_2) .

3.5.1 Stage 1. The nomenclature for the various terms of the Stage 1 calculations is illustrated on Figure 5. The proper equation is given below; it is the solution for (k_v) for an isotropic medium $(k_h/k_v=1)$.

$$K1 = R_{T}(\pi d^{2}/11D_{1})[1+a(D_{1}/4b_{1})]Ln(H_{1}/H_{2}')/(t_{2}-t_{1})$$
(3.5-3)

where:

d = ID of Standpipe

D₁ = Effective diameter of Stage 1

(Casing ID or OD)

 b_1 = Depth of tested medium below bottom of casing

a = +1 for impervious lower boundary

a = 0 for infinite depth of tested medium $(b_1=\infty)$

a = -1 for pervious lower boundary

And the other terms are as defined above. For field use, the geometric terms are combined into a single constant:

$$K1 = R_T G1 Ln(H_1/H_2')/(t_2-t_1)$$
 (35-4)

where:

G1 =
$$(\pi d^2/11D_1)[1+a(D_1/4b_1)]$$

A complete example is given in the Sample Calculations, Appendix A.

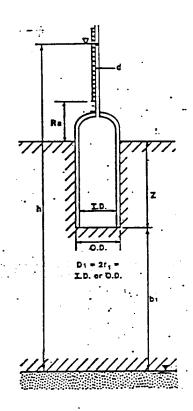


FIGURE 5
STAGE 1 NOMENCLATURE

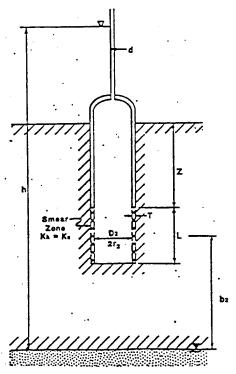


FIGURE 6 STAGE 2 NOMENCLATURE

3.5.2 Stage 2. The nomenclature for the various terms of the Stage 2 calculations is illustrated on Figure 6. The proper equation is that given below; it is the solution for (k_v) with the assumption that $(k_h/k_v=1)$.

$$K2 = R_{T} (d^{2}/16Lf) \{ Ln[u(1,r_{o},0)] + a Ln[u(1,r_{o},2b_{2})] \} Ln(H_{1}/H_{2}')/(t_{2}-t_{1})$$
 (3.5-5) where:
$$f = 1-0.5623 Exp(-1.566 L/D)$$

$$L = Length of Stage 2 cylinder below casing$$

$$u(1,r_{o},0) = \{ L/D_{2} + \sqrt{1 + (L/D_{2})^{2}} \}^{2}$$

$$u(1,r_{o},2b_{2}) = \frac{4b_{2}/D_{2} + L/D_{2} + \sqrt{1 + (4b_{2}/D_{2} + L/D_{2})^{2}}}{4b_{2}/D_{2} - L/D_{2} + \sqrt{1 + (4b_{2}/D_{2} - L/D_{2})^{2}}}$$

$$D_{2} = Diameter of Stage 2 extension$$
 (normally casing ID)
$$b_{2} = Distance from center of Stage 2 extension to underlying boundary$$

And the other terms are as defined previously. The factor (f) was introduced to account for the non-convergence of the Hvorslev equations as $(L \rightarrow 0)$. For field use, the geometric terms are combined into a single constant:

$$K2 = R_T G2 Ln(H_1/H_2')/(t_2-t_1)$$
 (35-6)

where:

G2 =
$$(d^2/16Lf) \{Ln[u(1,r_0,0)] + a Ln[u(1,r_0,2b_2)]\}$$

A complete example is given in the Sample Calculation, Appendix A.

3.5.3 Time-Weighted Averaging. Whether one uses the Laplacian or the Green-Ampt model for groundwater flow, there are still transient effects at the beginning of every type of field or laboratory permeability test. The observed effect is to indicate a high permeability, gradually decreasing to some relatively constant value corresponding to a steady-state flow condition. Such an effect is usually noted in the TSB. Therefore, the test must be conducted "long enough" to achieve virtually the steady-state condition or the results will be not only too high but also erratic. In addition, a single value each of (K1) and (K2) must be used in the final data reduction (Section IV).

There is no reliable method for pre-calculating the length of time required to achieve steady-state. Rather, the observational method is used. The appropriate apparent permeability (K1 or K2) is calculated for each time increment, and/or over longer periods of time; when these appear to be stable, they are checked using arithmetic time - weighted averages, e.g.,

$$K' = \Sigma (TiKi)/\Sigma (Ti)$$
 (3.5-7)

where:

K' = Arithmetic Time-Weighted Average (ATWA)
Permeability

Ti = Time Duration of Test Increment (i)

Ki = Permeability Measured during Test Increment (i)

This is theoretically exact for a single run (between refills). Time - weighted averaging also provides a rational basis for smoothing the (often) slightly erratic individual (K1,K2) values from the various time increments. An example of time-weighted averaging is given in the Sample Calculations, Appendix A.

3.5.4 Termination Criteria. Infiltration theory indicates that the apparent permeabilities (K1,K2) should forever decrease at an ever-and-ever decreasing rate. Observations in over 200 of these tests show that a steady-state condition or a close approximation of it is achieved in reasonable testing periods. A log-log plot of apparent permeability versus time is useful in determining when steady-state is achieved. Eventually, the (K1,K2) plots fluctuate about stable values. An example of such a plot is given in the Sample Calculation, Appendix A. This plot illustrates the importance of fairly closely spaced readings at the beginning of each stage, which allow separating the long-term behavior from the short-term fluctuations, i.e., enhance the "signal-to-noise" ratio.

In most tests, time-weighted averages become quite stable, often to within 1 to 5%. A reasonable set of criteria for terminating a stage is as follows:

The time-weighted averages do not show an upwards or downwards trend with time,

and

Do not fluctuate more than 10 to 20% among themselves,

and

Maintain this behavior over a "sufficiently long" time, 12 - 72 hours depending on permeability.

IV. - DATA REDUCTION

4.1 Basic Procedure. In some cases, the (K1') or (K2') values may be adequate for the purpose of the test. More generally, the test is performed to determine the actual (k_b, k_v) . This section outlines how to convert the (K1', K2') values calculated as outlined in Paragraphs (3.5.1) and (3.5.2) into the real permeabilities (k_b, k_v) . Details for the common case are covered below.

4.1.1 Simultaneous Equations. The equations presented earlier for determining (K1,K2) are special cases of more general relationships. These more general equations define the degree of anisotropy by the parameter:

$$m = \sqrt{k_h/k_v} \tag{4.1-1}$$

This parameter affects the geometric terms of the various equations. Each stage has its own equation with a different effect of (m). In a general sense, these can be written as:

Stage 1:
$$k_v = G1_m Ln(H_1/H_2')(t_2-t_1)$$

 $K1 = G1 Ln(H_1/H_2')(t_2-t_1)$
or $k_v = K1 (G1_m/G1)$ (4.1-2)

where: $G1_m = Geometric factor including (m)$

Similarly, for Stage 2,

$$k_{n} = K2' (G2_{m}/G2)$$
 (4.1-3)

If the soil medium being tested is homogeneous (although cross-anisotropic and possibly bounded), the vertical permeability (k_v) must be the same in both stages. Hence, (4.1-2) and (4.1-3) provide two equations in the two unknowns $(m = \sqrt{k_h/k_v})$ and (k_v) . The resulting equation is:

$$K1'(G1_m/G1) = k_v = K2'(G2_m/G2)$$

or $K2'/K1' = (G1_m/G1)(G2/G2_m)$ (4.1-4)

The standpipe area (A_p) cancels for each individual stage in (4.1-2 and 4.1-3), even though different (A_p) values may have been used for Stage 1 and Stage 2, and even for different portions of either stage. The actual equations for the geometric constants involving (m) are given in Paragraph (4.2).

The ratio (K2'/K1') is known from the test; the actual values introduced are the long-term time-weighted averages, (K1' and K2'). The geometric terms are also known. Therefore, Equation (4.1-4) is satisfied only for one value of (m). Due to the complex nature of (4.1-4), trial-and-error or graphical solution works best for specific problems.

4.1.2 Calculating (k_b) and (k_c) . The value for (m) is obtained as outlined above in Paragraph (4.1.1). When (m) is known, (k_c) can be calculated directly from Equation (4.1-2), and, by the definition of (m) in Equation (4.1-1).

$$k_h = m^2 k_v (4.1-5)$$

4.1.3 Stage 1 Only Method. In some individual tests, the ratio (K2'/K1') is so low that Equation (4.1-4) fails to converge. Others may have so large a (K2'/K1') ratio that the permeability values are obviously in error: (k_v) is far too low and (k_h) is far too high. This is usually due to inhomogeneity of the tested material. Advancing Stage 2 into a zone of lower permeability will cause a low (K2'/K1'). Conversely, advancing into a zone of higher permeability (such as a poor lift joint in fill or a silt/sand seam in natural materials) yields a very high (K2'/K1').

These events are handled by using a conservative (m) from the best-behaved tests and introducing that value into Equation (4.1-2).

4.2 Image Equation with Smear. The basic Hvorslev equations apply most directly to masses of infinite depth and below the groundwater level. Neither test pads nor liners often meet these criteria. Therefore, results calculated by using the Hvorslev equations directly for such cases will not be correct. For a given permeability, both proximity to a drainage zone and the vertical gradient due to gravity cause the flow to be greater than the basic Hvorslev equations would predict. The basic Hvorslev equations therefore predict a higher permeability than the material really has. The vertical gradient effect can be overcome by using the head as from the top of the standpipe to the groundwater level. A method for accounting for the proximity effect and proving the previous assertion was needed.

The method of image wells has been used in geohydrology for years. The classic example is the solution for a well near a river, found in many textbooks. However, the method is not limited to two-dimensional situations such as this illustration. Any solution for an infinite or semi-infinite medium which describes the potential field (head distribution) can be converted to a solution for a finite medium bounded by a plane by using the Image Potential technique (Carslaw & Jaeger, 1959).

The basic idea is that halfway between a source and a sink of equal but opposite strength will be a plane of zero potential. So, if there is a plane of zero potential (head), its effect can be replaced by an "image" source/sink located twice as far away from the sink/source as is the midway plane. If the test (source) is set a distance (b) above the drainage blanket, the flow field will be the same as if there were no blanket but there was an image test (sink) with negative head at a distance of (2b) below the real test. Since the drainage blanket is at zero head, the head at the test is taken as the total head lost: (b) plus the excess pressure (ht) applied at the infiltration point of the test.

Consider also the case where both the real and image sources have equal strengths and both are sources (positive head) or both are sinks (negative head). By the same logic as given above, the midway plane will be a no-flow boundary, corresponding to an impermeable bottom boundary located at a depth (b) below the real test.

4.2.1 Stage 1. The Hvorslev-Image equation (Case "C") for the flush-bottomed portion of the test is given by:

$$k_v = (\pi d^2/11 \text{mD}_1)[1 + a(D_1/4 \text{mb}_1)] \text{Ln}(H_1/H_2')/(t_2 - t_1)$$
 (42-1)

where:

d = ID of Standpipe

 D_1 = Test diameter for Stage 1

b₁ = Thickness of test medium below base of casing

 H_1 = Initial head $(t=t_1)$

 H_2^{-1} = Corrected final head = H_2 -c (see Paragraph 3.5)

t₂ = Final time t₁ - Initial time

a = -1 for permeable bottom boundary

a = 0 for infinite depth to bottom boundary

a = +1 for impermeable bottom boundary

Equation (4.2-1) can also be written as:

$$k_v = G1_m Ln(H_1/H_2')/(t_2-t_1)$$

$$G1_m = (\pi d^2/11mD_1)[1+a(D_1/4mb_1)]$$
(42-2)

4.2.2 Stage 2. Similarly, for the cylindrical case (Hvorslev "G"), the Image equation (with sidewall smear) is that given by:

$$k_{v} = (d^{2}/16Lfm^{2}) \{Ln[u(m,r_{o}+T,o)] + a Ln[u(m,r_{o},2b_{2})] + p Ln[u(m,r_{o},o)/u(m,r_{o}+T,o)]\} Ln(H_{1}/H_{2}')/(t_{2}-t_{1})$$
(42-3)

1.

where: L = Length of Stage 2 extension

$$f = 1-0.5623 \text{ Exp}(-1.566 \text{ L/D})$$

$$u(m,r_o,0) = [mL/D_2 + \sqrt{1+(mL/D_2)^2}]^2$$

$$u(m,r_o,2b_2) = \frac{4mb_2/D_2+mL/D_2+\sqrt{1+(4mb_2/D_2+mL/D_2)^2}}{4mb_2/D_2-mL/D_2+\sqrt{1+(4mb_2/D_2-mL/D_2)^2}}$$

$$u(m,r_o+T,0) = \{mL/(D_2+2T) + \sqrt{1+[mL/(D_2+2T)]^2}\}^2$$

$$p = k_h/k_s$$

$$k_s = \text{Permeability of smeared zone}$$

$$T = \text{Thickness of smeared zone (0.6cm=0.25in)}$$

$$D_2 = \text{Diameter of Stage 2 extension}$$

$$b_2 = \text{Distance from center of Stage 2 cylinder to underlying boundary}}$$

And the other terms are as defined above for Stage 1. Equation (4.2-3) can be written in the generic format as:

$$k_v = G2S Ln(H_1/H_2')/(t_2-t_1)$$
 (42-4)

where: G2S =
$$(d^2/16Lfm^2)\{Ln[u(m,r_o+T,o)] + a Ln[u(m,r_o,2b_2) + p Ln[u(m,r_o,o)/u(m,r_o+T,o)]\}$$

The generic expression for (K2'/K1') as a function of the test geometry is Equation (4.1.4). Following the steps outlined in Paragraph (4.1.1),

$$K2'/K1' = (G1_m/G1) \cdot (G2/G2S)$$
 (42-5)

where:

$$(G1_m/G1) = (1/m) [1+a(D_1/4mb_1)]/[1+a(D_1/4b_1)]$$

$$(G2/G2S) = \frac{m^{2}\{Ln[u(1,r_{o},0)]+aLn[u(1,r_{o},2b_{2})]}{Ln[u(m,r_{o},+T,0)]+aLn[u(m,r_{o},2b_{2})]+pLn[u(m,r_{o},0)/u(m,r_{o}+T,0)]}$$

Equation (4.2-5) is solved by taking an appropriate (p) and determining (m) by trial-and-error or by a graphical solution such as Figure 7.

The value of (p) is not determined in the test. The normal range of (p) is from 2 to 20; (p=1) indicates no smear. The following values for (p) have yielded satisfactory results, consistent with apparently non-smeared tests on the same tested units:

K2'/K1'	р
>1.1 0.9 - 1.1 0.8 - 0.9 0.7 - 0.8 0.6 - 0.7 0.4 - 0.6 0.4>	1 1,2 2,5 5,10 10,20 15,20

* Use Stage 1 Only Approach - Paragraph (4.1.3).

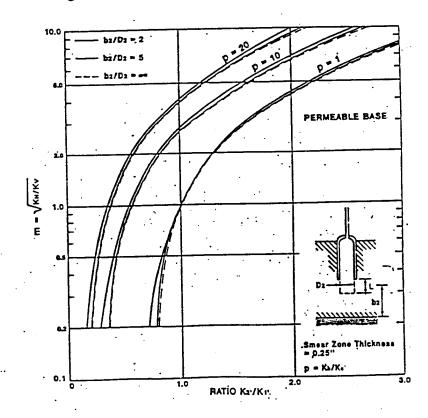


FIGURE 7 GRAPH FOR (m) - (L/D=1.5)

- 4.3 Non-Saturated Media. Field permeability tests are frequently performed on materials which are not fully saturated. Such materials affect the tests in two ways:
 - The hydraulic head is dissipated over the (changing) distance from the point of inflow into the soil to the "wetting front", where the soil is considered fully saturated (Green-Ampt Model).
 - Unsaturated clays exhibit "soil suction", which effectively adds to the hydraulic head.

In the Two-Stage test, infiltration into the soil is three-dimensional. The majority of the head loss occurs close to the inflow surface, even in a fully saturated material. About 50% of the loss occurs within one test radius of the inflow surface. For a typical Two-Stage test, disregarding wetting front distance theoretically yields a permeability 10 to 50% too high.

The effect of soil suction is roughly proportional to the ratio of suction to applied head. The effect of suction alone on a permeability test can be expressed as:

$$k_a/k_t = (1 + S/h_o)$$
 (4.3-1)

Observed permeability

True saturated permeabilitySoil suction

Applied head

The Two-Stage test normally operates with heads 3 to 6 times those of other test methods, minimizing the relative effect of suction.

These two effects can be handled using the graph presented on Figure 8. That figure is based on numerical solutions for the equipotential surfaces in an infinite medium (a=0). However, for the typical real test, the dimensionless flow volume is such that the equipotentials do not vary significantly from the ellipsoids in either the permeable-base (a=-1) or impermeable-base (a=+1) cases. The actual volume, which includes an allowance for the impermeable casing, has been included on Figure 8.

When using Figure 8, the initial volume (V_o) is taken as:

Stage 1 - The volume of a hemi-ellipsoid having the diameter (D₁) and height $(D_1/4)$.

$$V_{o1} = (\pi/24) D_1^3$$
 (4.3-2)

Stage 2 - The volume of the Stage 2 cylinder.

$$V_{o2} = (\pi/4) D_2^3 (L/D_2)$$
 (4.3-3)

The term (V_w) is the total volume of water which has infiltrated into the soil through the end of each stage, allowing for that removed in the Stage 2 extension. The (n_x) term is the soil's air porosity.

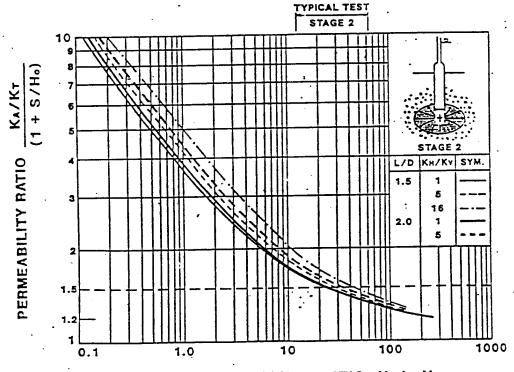
Figure 8 is applied first to the individual (K1) values from Stage 1:

$$K1_t = K1/[R(1+s/H_o)]$$
 (4.3-4)

where:

K1, = K1 corrected for suction and wetting front

R = Permeability ratio from Figure 8


Then, Figure 8 is similarly applied to the individual (K2) values from Stage 2:

$$K2_t = K2/[R(1+s/H_o)]$$
 (4.3-5)

where:

K2, = K2 corrected for suction and wetting front

Thereafter, (K1, K2) are used in Equation (3.5-7) for the average values (K1', K2'). These are then introduced into Equations (4.2-5) for (m) then (4.1-2) for (k_y) , and finally (4.1-5) for (k_h) .

INFILTRATION VOLUME RATIO Vw/naVo

FIGURE 8
NON-SATURATION EFFECTS

V. EXPERIENCE WITH TSB TESTS

As of January, 1992, STEI alone has been involved in some 200 tests (40+ projects) on recompacted materials and 90 tests (6 projects) in natural materials. These have generally been of relatively low permeability [10(-6) to 10(-9) cm/sec]. Some conclusions from this experience are given below.

- 5.1 Types of Projects. The test has been successful in many types of soils:
 - 5.1.1 Test Pads and Liners. It has been used in such conditions for test units from 20 to 60 inches thick. Materials have ranged from CH-OH (Liquid Limit 100+, clay content 70%+) to SC/GC (Liquid Limit 30-, gravel content up to 30%, clay content 12%). Vertical permeabilities have been successfully measured from the mid 10(-7)'s to the low 10(-9)'s (values in cm/sec).
 - 5.1.2 "Natural" Deposits. It has been very successful in clays to depths of 10 to 15 feet. Where the clay does not make water, it has also been successful to about 20 to 25 feet. The test was moderately successful in soft, highly layered mine tailings clay at depths up to 30 feet. It has been used up to 7 feet deep in shales. Measured vertical permeabilities have been in the same ranges mentioned above.
- 5.2 Comparisons with Other Methods. The accuracy and lack of false negatives of the TSB can be evaluated by the comparisons with SDRI data shown on Figure 9 and with laboratory data from undisturbed samples given on Figure 10. Of the 11 known cases where both field methods were used on the same test pads/liners the mean ratio of their conductivities was 1.1 (TSB higher). In three known cases, the TSB proved failure defects in test pads that laboratory tests did not show, indicating the TSB avoids false positives. Experience to date can be summarized as:
 - 5.2.1 Recompacted Clays. The vertical permeability (k,) as obtained from laboratory tests, the TSB, and the SDRI generally agree quite well on test pads/liners (11 cases) which have had proper CQA. The laboratory tests tend to underestimate the horizontal permeability.
 - 5.2.2 Natural Clays. Comparisons have only been made with small-scale laboratory tests. In general, there is good agreement with the TSB for vertical permeability, while laboratory tests again underestimate the horizontal permeability.
- 5.3 Speed. As soon as the test begins, so does the question from the client, "Does it Pass?" It is usual that (k_v) must be less than some specified value (Spec), or that (k_h) must be greater than a different (Spec). Since the maximum possible value for (k_v) is (K1), as soon as (K1 < Spec), one knows the test for (k_v) must pass. Likewise, since (K2) is the minimum possible value for (k_h) , if the long-term (K2) is greater than (Spec), the test for (k_h) must pass.

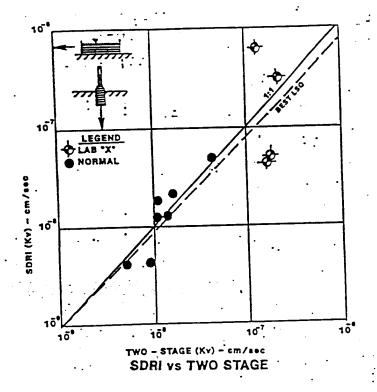
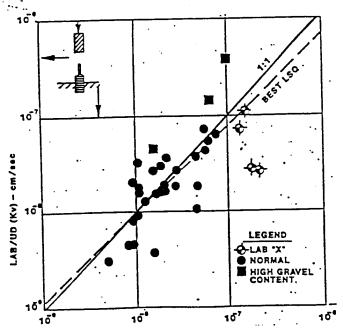



FIGURE 9
TSB AND SDRI RESULTS
(Tests on Same Liners/Test Pads)

TWO - STAGE (KV) - em/sec LAB/UD vs TWO STAGE

FIGURE 10
TSB AND LAB (k,) RESULTS
(Tests on Same Liners/Test Pads)

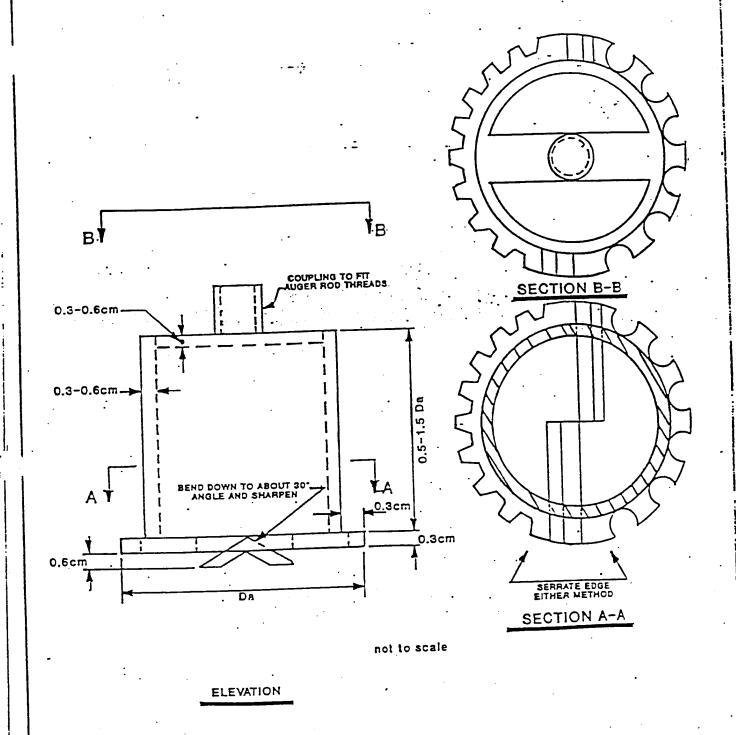
Most of the TSB tests to date in test pads/liners have been for (k_v). The better the pad, i.e., the higher the (Spec/k_v) ratio, the sooner (K1<Spec). In 90% of the tests where (Spec/k_v>1.7), passing was indicated in 24 hours or less. Some 75% of all tests have indicated passing within 72 hours. A marginal test unit, whose (k_v) is just below (Spec), will require completing Stage 2. In general, each Stage lasts 4 to 14 days, the longer times being required to complete a test in lower permeability materials.

5.4 Volume Tested. A single typical TSB test permeates a volume around 0.6 to 1.1 cubic feet, or 60 to 200 times the volume of a typical plug tested in the laboratory (3 inch diameter, 3 inch height). The usual 5-test program thus tests about 10 to 20% the volume of an SDRI, yet yields about the same values. The TSB has a good balance of soil volume tested and speed.

REFERENCES

Benson, C.H. (1991) - personal communication.

Boutwell, G.P., and C.N. Tsai (1992), "The Two-Stage Test - Measuring Field Hydraulic Conductivity Rapidly", Geotechnical News, June, 1992 (in press).


Carslaw, H.S. and J.C. Jaeger (1959), Conduction of Heat in Solids, 2nd. Ed., Oxford University Press, London, UK.

Daniel, D.E. (1989), "In-Situ Hydraulic Conductivity Tests for Compacted Clay", <u>Journal of Geotechnical Engineering</u>, ASCE, Vol. 115, No. 9, Sept. 1989, pp. 1205-1226.

Day, S.R., and D.E. Daniel (1985), "Hydraulic Conductivity of Two Prototype Clay Liners", Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 8, pp. 957-970.

Hvorslev, M.J. (1951), <u>Time Lag and Soil Permeability in Ground-Water Observations</u>, Bulletin No. 36, USA/COE WES Vicksburg, MS.

U.S. Bureau of Reclamation, The Earth Manual, Second Edition, 1974, pp. 573-578.

NOTE: FOR FLAT AUGER, Da=D+5cm FOR REAMER, Da=D-0.1 cm

Medical Comment

FLAT BOTTOM REAMING AUGER

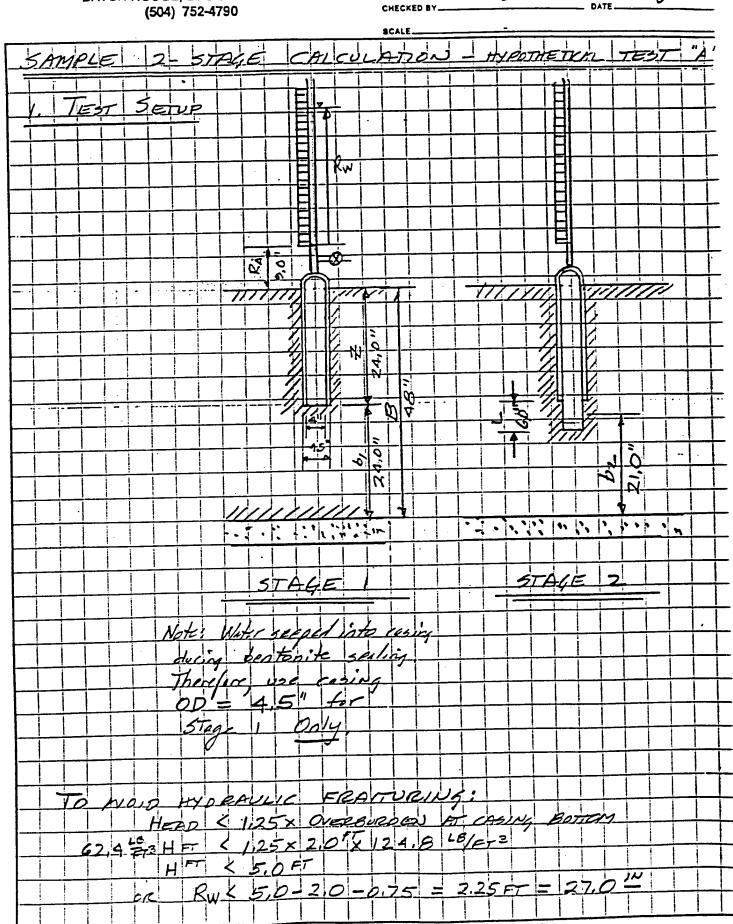
STAGE 1 CALCULATIONS

							•						• • •			• • •
R. R. Z. b.		–d D m z Ra	= 1.27 = 11.43 = 61.6 = 22.9 = 61.6	3cm 2cm _cm	. н	= <u>14</u> 4	7_Δhe 1,8_+R 184/Ln (H1) t2-1	 (H ₂)	τọ	ound Elev.: C Elev.: e Coords: _		•				
Date	Time	∆t (hrs.)	∆t (sec.)	R _, (cm)	.H1- (cm)	'H2 (cm)	K1 (cm/sec)		H2': (cm)			Ri. Factor	K1'ı (cm/sec)	Cum Vol. (cc)	Cum. Hrs.	Remarks
8/01	0800	_	_ ·	64.8		209.6		0:0	_	-	21	-	<u> </u>	0.0	0.0	START
0,0,	0830						1.80E-06	0.0	192.6	1.80E-06	21	0.97	1.76E-C6	21,5	0.5	
	0900		1800	36.3	1926	181.1	1.31 E-06	0.0	181.1	1.31 E-06	21	0.97	1.27E -06	36.0	1.0	
	1000		3600	19.7	181.1	164.5	1:03E-06	0.2	164.3	1.04 E-OL	22	0.96	2.92 E-07	57.1	2.0	Ens Row
	1001	,,,,,,	-	66.7	 	211.5	·	0,0	T -		22	<u>'-</u>		<u> -</u>	2.0	REFILL
		1/459	7/40				5.26E-07	0.6	191.2	5,44 E-07	23 .	0.94	5.09 E-07	82.0	4.0	
	1200	1473 /2	7740	•	1			etc,					<u> </u>	<u> </u>	<u> </u>	
8/05	.700		 	50.0		124.8					126		<u> </u>		105.0	
8/06	0800	15.00	54000	38.1	194.8	182.9	1.19E-08	-2.8	185.7	3.39 E-08	119	0.94	3.20E-08	205.5	120.0	STOP
	ì	1	ı	1	1	1	I .	1.	1	1		1		1		<u> 1</u>

STAGE 2 CALCULATIONS

RA Z b2		_d D Z	$= \frac{1.27}{1.00}$ $= \frac{10.16}{1.00}$ $= \frac{61.00}{1.00}$ $= \frac{22.9}{1.00}$ $= \frac{53.3}{1.00}$	_cm _cm	Δiv Н	= 1.2 = 14	_cm: 7_ Δhe 4.8 +R 570 Ln (H1. t2-t	/H ₂)	то	ound Elev.: C Elev.: e Coords: _	<u>.</u>	(before)	Project: File No.: Test No.:_ Page :	:	•	
Date	Time	∆t (hrs.)	Δl (sec.)	R _. (cm)	H1- (cm)	·H2 (cm)	K2 (cm/sec)	(cm)	H2 ^{1.} (cm)	. K21 (cm/sec)	Temp. (°C)	R: Factor	.K2'; (cm/sec)	Cum Vol. (cc)	Cum. Hrs.	Remarks
3/06	0930			65.4		210.2		,			20.	-		0.0	0.0	START
,,,,,	1000	0.5				204.2	2.52 E -07	0.0	204.2	2.52 E-07	21		2.49 E-07			
	1030	0.5	1800	54.3	204.2	199.1	2.21E07	.0.2	1989	2.28 E-07	22		2.19 E -07			
	1130	1.0	3600	45.7	199.1	1905	1.92E -07	10.3	190.2	2.00 E -07	2.3	0.94	1:67E -07	24.9	2.0	
	1330	2.0	7200	33.3	190.5	178.1	1.47E-07	+1.3	176.8	1.62E-07	24:	0.91	1.48E-07	10.6	4.0	
							etc.									
109	0730	-		21,3		166.1					16				70.0	
	1600		30600	9.2	166.1	154.0	388E-08	+1.1	152.9	425E-08	19	1.07	4.56 E-08	267.9	785	5108

APPENDIX A


SAMPLE CALCULATION FOR 2-STAGE FIELD PERMEABILITY TEST

NOTE: This is an idealized case exhibiting virtually perfect behavior, and is not to be considered representative of field behavior.

SOIL TESTING ENGINEERS, INC.

316 Highlandia Drive P.O. Box 83710 BATON ROUGE, LOUISIANA 70884 (504) 752-4790

SAMPLE -	"A" .
SHEET NO.	OF
CALCULATED BY	DATE 08 Aug 9/
CHECKED BY	DATE

SOIL TESTING ENGINEERS, INC.
316 Highlandia Drive
P.O. Box 83710

BATON ROUGE 1 OUISIANA 70884

100 SAMPLE	<u>-A</u>	
7		OF
CALCULATED BY		DATE

	BATON RO	DUGE. LO	DUISIAN	IA 7088	4		C	ALCULA'	TED	BY									
		(504) 75	2-4790				C	HECKED	BY_					_ DA	TE				<u> </u>
2. TEST	DATA			· ·			8	CALE_										_	:
	57/14	EII	DATA	9 1					1	377919	E		$\frac{1}{2}$	אני	174	<u></u>	-	_	_[
						1		-	1	TI						<u> </u>		\Box	
 		 								T	•					<u> </u>			_
- 		R#	O C	Temp.	TEG		1		- 1		R	1	₽ C	$\exists i$	Tem	p. '	TEG	اا	
- Da	te Time	(in.)	(in.)	(°F)	(14)	+		Dat	e	Time	(in.)	(in.)	(°F) ¹	(in.)	` _]	
-					 	┾╂┼	-	8/0	/	0030	25:	75		\dashv	68	- 7	2.56		
5/0	1	25,50		70	13,00	$ au\Pi$	_	90	- 1		23.3		0.0		70	\neg	12.50	$\neg \neg$	
	0830	18.81	0	70	13.00	$\neg \neg \neg$		-	\neg					\neg	72	- 	12.6		
	0900	14.31	0	70	13,0	.	_	-	_	1030				- 1			12.75	\neg	
-	1000	7,75	+0.06	72	13,0	9	- .	-		1130	Ī		10.1		.74				H
	2d. 100 1	2625		72	13:0	6	Ļ · .	.}		1330			+0.5		76	\neg	13.25		\vdash
	1200	18,50	+0.25	74	133		_	<u> </u>	•	1700	7.1	2	+06	2	80		13.9	7	$\vdash\vdash$
		13.88		80	14.3			<u> </u>	·R	1701	26.	56			80		138		\vdash
	Pd. 1601	7 1	i .	80	14:3		L	8/6	27	0700	6.	06	<u>-/./</u>	2	70	24	12.8	격_	
8/6		15.81		65	12.8	1			R	0701	25	.25			70	<u> </u>	125	2	<u> </u>
- 0/0		14.00	ı	74	14.1					1200			1	31	74	1	130	3	ا ــــا
- 0		2.06	1		12.8		Γ			1700	T.		1		Z	8	13.5	2/	
+ +		11		1	13.9		Ī	8/	9	0800			1		1	2	12.0	2	
		8.38		11	7-7-		†	17		0802	1		1		62		120	9	-
- 8	04 0800	i li	1	11 .	12.4		+			1700	1		1	49			13.7	'8	
		26.50	1	62	12.4	$\neg \neg$	+	101	•	0730			-/,		1	1	12.2	- 1	T
		1 24.88			13.0		+	8/1	<u> </u>	1			į.		•	$\overline{}$	12.6		十
8/	070	0 20.88	-0.62	66	12,3	37	+	-		1600	<u>) 3.</u>	62	170	<u> </u>	100		/2.0	+	\dagger
	1700	12.6	11.25	78	13.1	62	╀ .	-					+-		-	نہ	<u> </u>	\dashv	十
8/	06 0800	15.00	7.12	67	113.5	50	Ţ				┼		-		-			\dashv	+
				_[]	<u> </u>	لك	<u> </u>	-		ļ	-				┼		 	-	+-
	•		1	i						<u>.l</u>			<u> </u>		. 		<u> </u>	ᆛ	+-
1 1	1.11	<u> </u>	1.1	V		1							Ł.	Ė	14	-	+	<u> </u>	1
 - - -	+++	١.,	/	1		7						\perp			1 R	5	DA	227	7
 		/	Red	DFR	OM		7							· .		TE	24	\perp	
\ 	++++	1	1 15	EU	1 1		1						1/						
	+		+++	77	++		1	† †	\neg				TL	CA	200	Pate	- 4	ساه	
- -		100	VLATE	, 	++		-	1-1			H	一		77	5/	1	20	01	5
		FROM	!	+	╂╌┼		+-	++		 	1-1-	+	 		7	7		T	T
		LE	YELS				+	+-				+	\dashv	\uparrow	$\dagger \dagger$	- 		1	1
	1.		11				+	+-1					-	 	++	\dashv		- -	-137
						-	-				-			<u> </u>	+		-	+	- 7.4
						_	_ _	<u> </u>			 	_ -	<u> - -</u>	-	 		_	+	+
						_				<u> </u>		\dashv		-	 			+	+
	- 	- I i				- 1					!	İ	-		-	<u> </u>			

SOIL TESTING ENGINEERS, INC. 316 Highlandia Drive P.O. Box 83710 BATON ROUGE, LOUISIANA 70884 (504) 752-4790

JOB SAMPLE - A	
BHEET NO. 3	
CALCULATED BY	DATE
CHECKED BY	DATE

		SCALE			
3.5TAGE 1				1	
2.2171198	1 1	100	,		
Fa com	5 FE	3.5-47			
A. CALCULATE TACTOR					
	11./1/2)	 	- Ind	11 D/	L N
	2-t,	WIN	F = 110	11 14	P++-
			1 1 1		
1 1 1 1 1 1 1 1 50"	1,27 c	m		etch on p.	
D=4,50"			(See no	EDN p. 1	
b,= 24.0"	= 60.26	tm	(Sec 9)	zetzh on	2/1)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7)2 / 1	11, 43 4×1000			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 11 1	4×10050			1
		- 		1.1	++++
	841 cm	 - - -			+
		<u> </u>			+ + + +
B. CALCULATIONS:					
D, CALLESTAN I					
1 11 HI = B+RA	1 122011	- 18	00+0,00	+R30 = 5	7,00+Rw
H2'= B+R	- L	1 1 60	00 + 5,00	10 -11 = 5	7.00 + /8
H2= B+ VCA	+ RUL-	<u> </u>	1 1 1	1 2 1	
		`			
i. Period 1700 08/02	- 0800	08/03			++++
		116100	1202 +C	1)7	+ + + +
$\frac{L_{1}}{K_{1}} = .03841 \frac{L_{1}}{K_{1}}$	5/1007/157	J (E)			
		I Cold	'	!!	
HI= 5700 + 14.	00 - 71		Note	TEG L	1/ 1,25"
H2 = 57,00 ± 2,0				period.	
H2 = 57,001 9,0	6.71,25	6/3/	1 1/2	Test diag.	wely tomp.
	12) 11	`- - - 	711	1731 1121	
At = 154,5 × 360	0 1/4 = 5	4000 sec		+ + + + +	
	<u> </u>	06 16 7.3	/) - - -		
KI: = 0.03841cm		54000 se	= 32	6 ×10/-	
		1 1 1 1		1 1	
Non an	Men viscos	ike room	echin		
	0- 174+6	ا الأ			
From chart	Visco		- 0.9	6 = R-	
From Chart	1 1 1	TY CARTOL		1	
	_	A F 41.4	1017	- 27/0	01-8) 0
$K_{1} = R_{7} \cdot K$	10 = 0.	26×[3.86	X101-87	- 2// ^//	366
					- - -
Spenie for los	bulaTIGN 1	Ill POOTS	7	1 1 1 1	1 1 1 1

SOIL TESTING ENGINEERS, INC. 316 Highlandia Drive P.O. Box 83710 BATON ROUGE, LOUISIANA 70884 (504) 752-4790

JOB SATIPLE - A	
SHEET NO.	OF
CALCULATED BY	DATE

(504) 752-4790	
	SCALE
A STAGE OF	
	
A, CARWIGTE FACTOR 1Eq.	35-5, with a=+111
A, CALWLATE TACTOR 1 Eq.	
	<u> </u>
LU(H1/H2)	
where: F = (4) (16L) LN L	
	$\cup (D, O, \cup)$
where: F = (=) (16L) LN	4(D52b2)
1 - 1560	(1-10)
f=1-05623E	_
	Cosino (6 M/10 = 15,24 cm)
1 = Extension below	05/20 (6)12/1/5 - 13/2+011)
D= Borebole dionet	
	= 48.00"- 24.00" - 6.00 /2 = 21.00"
$B = B + \frac{1}{2}$	= 48.00 - 24.00 - 6.00/2 = 21.00
(271 - 5/0) - 1/-11	11-122101 4/672
J(1,D, 3) = (23/0+1/0) + V-1	+ [P3/D+4/0]?
	+ [23/0-1/0]
1566 (1.5)	
f=1-0.5623 e	4/0=4/4"=1.5
Je 15 10 0.3023 C	
= 0.9463	
	╶╵┈╎┈╎┈ ╎
(0+1.55)+V1+ E	0+1.5] 1.5 + V 1+1.52 [U1,10)
V(1,60)= U(1,00)= (0-1.5) 1/1+10	-1.572 -1.57 Y 1+1.52 E1.35-5
	= [1.5+11.57]
= 10.5083	
252=2×21=42" (8+/4+15)+1/+	Tell 12 27 51 V1422 52
1 (8+/A+15)+VIVI	= 223 \$ \$ 1762.5
$\frac{2b_2 = 2x2 = 42''}{0(16, 2b_2) = 0(1p), 42} = \frac{(84/4 + 1.5) + \sqrt{1+1}}{(84/4 - 1.5) + \sqrt{1+1}}$	19.5 + 17.54
(84/4-1.5) + V V +	[84/4-1.5]2 1957 177952
	[U(1, co, 262) Eq. 3.5-5]
	/
0 F = 0.3463 × 1.6×15,24 cm LW	10.9083/1.1537)
0.7403 16×15,2467	
F= 0.01570m	
	╶┊┋┋
_!	
	╘╒┩╒┩╒┩╒┩╒┩╒┩╒┩╒ ┪

SOIL TESTING ENGINEERS, INC.
316 Highlandia Drive
P.O. Box 83710
BATON ROUGE, LOUISIANA 70884 (504) 752-4790

100 SAMPLE - A	
SHEET NO	•
CALCULATED BY	. DATE
CHECKED BY	DATE

5.B. Carcology to K2 (See p. 7 forth deta points) This is virtually the same calculation as on p. 8 Period (Bis) calculation K2' C.D-2.O 24.921.90+21.921.90+18.7×3.00 72.00 = 21.05×10/-8) 2.11×10(-7) 2.0-21.5 72.00+71.00×12.60+7.52.50.34 72.14 = 8.89×10/-8) 8.89×10/-8) 2.0-21.5 72.00+17.94 + 9.74×18.00 191.88 5.34×10/-8) 5.34×10/-8) 2.5-31.5 5.94×17.94 + 9.74×18.00 195.88 5.34×10/-8) 5.34×10/-8) 31.5-55.5 4.40×52.20+4.55×32.28 387.01
This is virtually the same calculation as on p. 8 K2'. Period (612)
Period (h/s) CALCULATION (NZ': 1,30 + 1,30 + 12,9 × 130 + 18,7×3,00 = 720 - 21,05 × 10/-5) 2,0 - 2,0 1,30 + 1,30 + 13,00 + 13,1×3,00 = 720 - 21,05 × 10/-5) 2,0 - 2/15 1,30 + 1,20 + 1,00 × 12,60 + 13,1×3,00 = 72,11 - 8,89 × 10/-8) 2,0 - 2/15 1,30 + 1,20 + 1,00 × 12,60 + 13,1×3,00 = 70,18 - 8,89 × 10/-8) 2,0 - 2/15 1,30 + 1,20
Period (h/s)
Period (his) EALCH 2013 CALCADON
Period (his) EALCH 2013 CALCADON
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{20-213}{215-31.5} = \frac{5.9.4 \times 17.94 + 4.74 \times 18.00}{17.99 + 18.00} = \frac{191.88}{135.94} = \frac{5.34 \times 10(-8)}{35.94} = \frac{5.34 \times 10(-8)}{35.94} = \frac{5.34 \times 10(-8)}{35.94} = \frac{5.34 \times 10(-8)}{35.94} = \frac{387.71}{86.28} = \frac{387.71}{86.28} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{4.49 \times 10(-8)}{4.52 \times 10(-8)} = \frac{373.91}{82.90} = \frac{4.52 \times 10(-8)}{4.52 \times 10(-8)} = \frac{52.20 + 30.60}{4.52 \times 10(-8)} = \frac{373.91}{82.90} = \frac{4.52 \times 10(-8)}{4.52 \times 10(-8)} = \frac{76.06}{4.52 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{469.08} = \frac{4.49 \times 10(-8)}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{469.08} = \frac{761.62}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{469.08} = \frac{761.62}{4.92 \times 10(-8)} = \frac{387.71 + 373.91}{469.08} = 387.71 + 373$
$\frac{20-213}{215-31.5} = \frac{5.9.4 \times 17.94 + 4.74 \times 18.00}{17.99 + 18.000} = \frac{191.88}{135.94} = \frac{5.34 \times 10/8}{35.94} = \frac{5.34 \times 10/8}{35.94} = \frac{5.34 \times 10/8}{35.94} = \frac{5.34 \times 10/8}{35.94} = \frac{387.71}{86.28} = \frac{387.71}{86.28} = \frac{4.49 \times 10/-8}{4.90 \times 10/-8} = \frac{4.49 \times 10/-8}{4.52 \times 10/-8} = \frac{4.49 \times 10/-8}{4.52 \times 10/-8} = \frac{5.34 \times 10/8}{4.49 \times 10/-8} = \frac{373.91}{82.90} = \frac{4.52 \times 10/-8}{4.52 \times 10/-8} = \frac{4.49 \times 10/-8}{4.52 \times 10/-8} = 4.49 \times$
$\frac{215-31.5}{215-31.5} = \frac{5.94 \times 17.94 + 4.74 \times 18.00}{17.94 + 18.00} = \frac{197.88}{135.94} = \frac{5.34 \times 107.8}{5.34 \times 107.8}$ $\frac{315-55.5}{51} = \frac{4.40 \times 54.00 + 4.55 \times 32.28}{64.00 + 32.28} = \frac{387.77}{186.28} = \frac{4.49 \times 107.8}{4.49 \times 107.8} = \frac{4.49 \times 107.8}{4.49 \times 107.8}$ $\frac{4.49 \times 52.20 + 4.56 \times 30.60}{52.20 + 30.60} = \frac{373.87}{82.80} = \frac{4.52 \times 107.8}{4.52 \times 107.8} = \frac{4.49 \times 107.8}{4.52 \times 107.8}$ $\frac{716}{64.97} = \frac{52.20 + 30.60}{64.97} = \frac{373.87}{82.80} = \frac{4.52 \times 107.8}{4.52 \times 107.8} = \frac{4.49 \times 107.8}{4.52 \times 107.8} = \frac{4.49 \times 107.8}{4.49 \times 107.8} = 4.49 \times 1$
$\frac{315-31.5}{315-31.5} = \frac{17.94 + 18.000}{17.94 + 18.000} = \frac{35.94 - 534 \times 1018}{387.71} = \frac{35.94 - 534 \times 1018}{4.49 \times 54.00 + 4.55 \times 32.28} = \frac{387.71}{86.28} = \frac{4.49 \times 101-8}{4.49 \times 52.20 + 4.56 \times 30.60} = \frac{373.91}{82.90} = \frac{4.52 \times 101-8}{4.52 \times 101-8} = \frac{52.20 + 30.60}{4.52 \times 101-8} = \frac{373.91}{82.90} = \frac{4.52 \times 101-8}{4.52 \times 101-8} = \frac{373.91}{4.52 \times 101-8} = \frac{4.52 \times 101-8}{4.52 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{367.62}{469.08} = \frac{4.50 \times 101-8}{4.50 \times 101-8} = \frac{35.94 - 534 \times 101-8}{4.49 \times 101-8} = \frac{35.94 - 534 \times 101-8}{4.49 \times 101-8} = \frac{367.71}{4.49 \times 101-8} = \frac{367.71}{4.50 \times 101$
3/5-55.5 1.40×54.00 + 4.55 × 32.28 387.71 86.28 = 4.49 × 10/-8) 1.40×54.00 + 4.55 × 30.60 2.50 = 4.52×10/-8) 4.49×52.20 + 4.56 × 30.60 373.91 = 4.52×10/-8) 4.52×10/-8) 555-78 & 52:20 + 30.60 76 /est two periods are virtually identical and lest since 24 hours 2.60 (eppropriate for this permeability land) 6.60 × 2' = 387.71 + 373.91 = 761.62 = 4.50×10(-8) 6.60 × 2' = 387.71 + 373.91 = 761.62 = 4.50×10(-8)
3/5-55,5 E4.00 + 32.28 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.52 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.49 × 10/-8 = 186.28 = 4.52 × 10/
55.5-78.5 4.49×52.20+4.56×30.60 = \frac{373.91}{82.90} = 4.52×101-8) 55.5-78.5 52.20+30.60 = \frac{373.91}{82.90} = 4.52×101-8) 7/e fest two periods are virtually identical and lest same 24 hours each (eppropriate for this permeability lend) each (eppropriate for this permeability lend) re \(\frac{7}{2} = \frac{387.71 + 373.91}{86.28 + 82.80} = \frac{761.62}{169.08} = \frac{4.40 \times 10(-8)}{4.52 \times 10(-8)}
55.5-78.5 52.20 + 30.60 82.80 = 4.52 x 20 x 20 x 20 x 20 x 20 x 20 x 20 x
The last two periods are virtually idential and last some 24 hours each (epprepriate for this permeability land) in K2' = 387.71 + 373.91 = 767.62 = 4.50×10(-8)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{1}{6} \frac{1}{16} $
56,28 + 52,50 163,05
56,28 + 52,50 163,05
1/21 = 4.50 × x0 8 cm/sec.
1 K2' = 4.50 x x0 = cm/sec /
┎╷╷╷╷╷╷╷╷ ╎┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈ ┼╌┼╌┼╌┼╌┼╌┼
60 CALCULATE KU MO Kh
A. SMERE.
Chack by KZ/K/ Pasto needed for next step
$k2! / kl' = \frac{4.50 \times 10(+8)}{3.21 \times 10(+8)} = 1.40$
Probably no smere since > 101
Tropadig the Street Private Pr

SOIL TESTING ENGINEERS, INC.

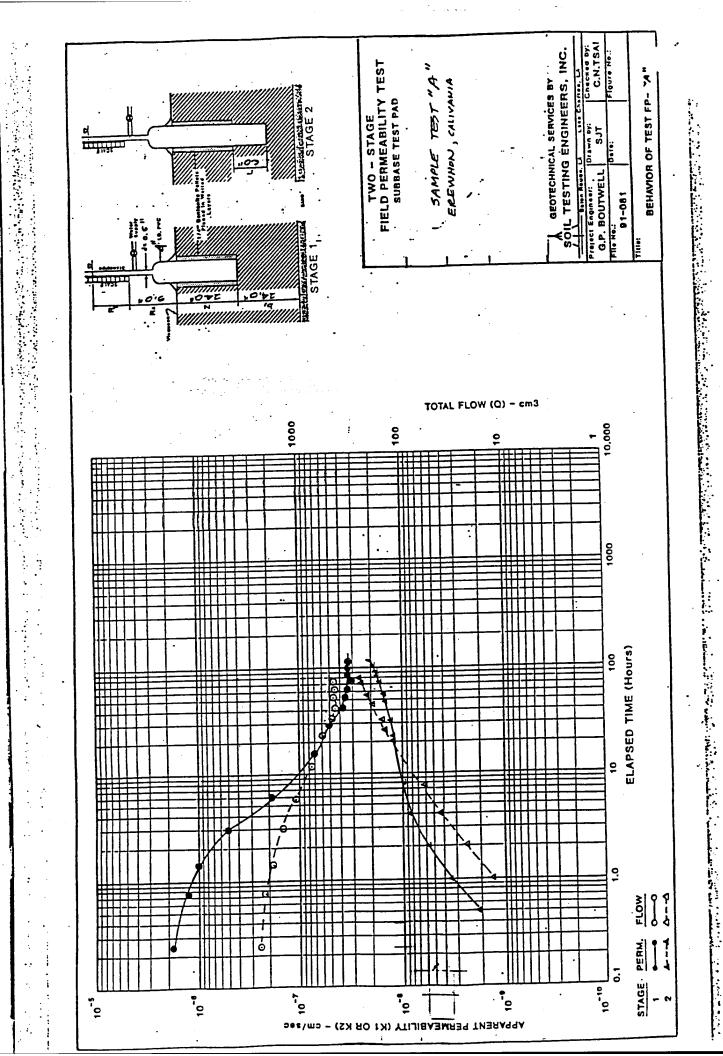
316 Highlandia Drive P.O. Box 83710 BATON ROUGE, LOUISIANA 70884 (504) 752-4790

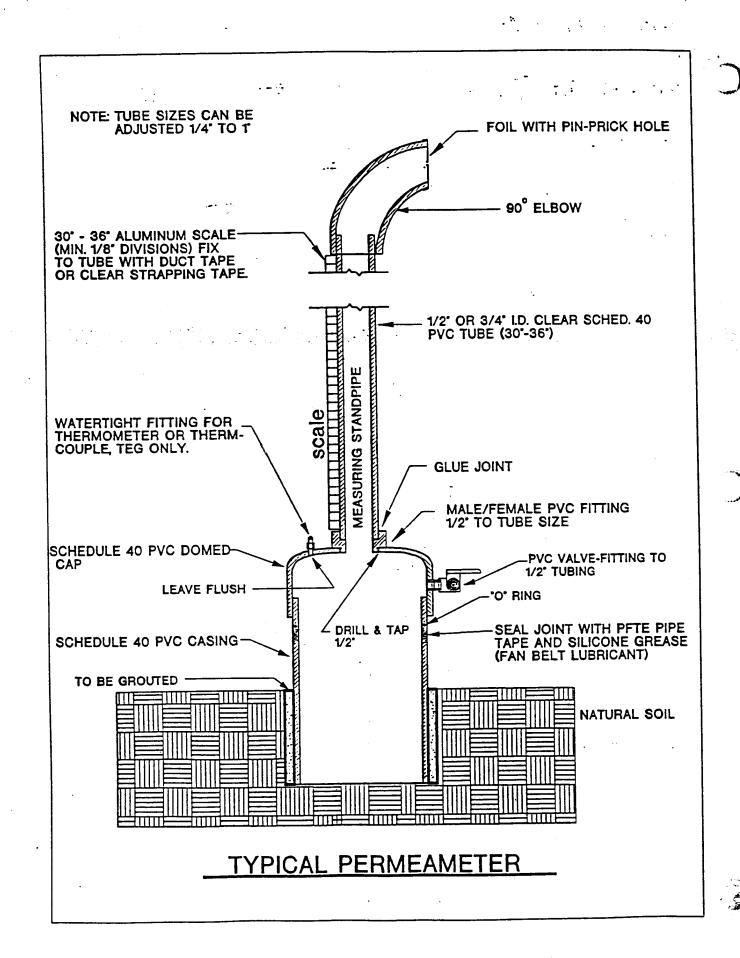
STEL LEA

SAMPLE.	- A
SHEET NO. 10R	
CALCULATED BY	
AUTOVED BY	DATE

	(504) 752-4790	CHECKED BY	
		SCALE	= }
			T
B. EDUA	TIN FOR SHOPTUIT	SEE P. 12)	
			! -
	16/0 / 162	[E0, 4, 2-5]	1 1
K21	/K1'= (9/m) (925)		
			
		mb. 7/1/4a(D1/4b1)	1 1
Very Gio	/G1 = (1/m) [1+ a (Di/4	mb. I I Tall DITTOLD IN	
100	but 0 = 1/143 co	(23) a=-1 (Pein, Base)	-
			1 1
	b= 700060	, (p. 3)	\top
		_ " <u> </u>	↓
l 	1 4 4 1 4 4 2	1207111 - 110090	1 1
	Im/G = (/m) [1 - 4/m)/6	226)	\top
7	(m) (mara) ()	<u> </u>	- -
	951 1701)]+a 4 [U(1)10,262)]	\top
1 1 1 1 1 1	12 - 1 - M-2 - W F - 1 - 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		┿┪
1 92/	625 = VX V V (m) (cst c) 7 V	-a Le [U(m, 0, 262)] +plu [U(n, 0,0)/U/m, 0-17	روء
	L-1073,073		77
111			╬╌┨
] _	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	This 62/625= M2 LA [06		+
 - - - -	mally 104	ا المحاكم المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال المال	
	7.No 62/625= LN (V 60.1)	10) / V(m) (0) 2b2)]	
		2= [1.5+ 11+15] = 10.20833	1
	1 (0,0) = [1/0+ (1+(1/0)=)	= 11,5 + 11+1,5	\neg
	1 24/D2 + 1/O2 + V	+ (40+102+4102)2	
1 1 1/1	10, 2h2 = 402/P2 - 4/D2 + VI		
	1 402/P2 + 1/D2 H N 1	+ (463/02-4/02)	-
1 1 1			
	$b_{2} = 21''$ (See	(P.V)	
 	D2 = 4.00 XS	Ep. 1	
 			
	4 (2/4) + 6/4 + V	1+6 4214 +6/412 = 45,022	
		11 (x × 21/2 C/2) 2 = 37.0256	-
┠ ─ ╎ ─┤─┤─┼	3/37/43 C/A 4 Y		
	1, 6, 26) = 1.15366	╵╶╏╸╏ ╶╏╸ ╏╸╏╸╏╸╏╸╏╸╏╸╏╸╏╸	
- - - - - - - - - - - - - - - - - - -	17 107 107 10 10 10 10 10 10 10 10 10 10 10 10 10	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	m2 Lw [10.208 33	11153667 2.24655 11	٦
	2/26 -	Torton 2 1 (11 (11 (14 202))	一十世
1 	2/9/3 - LN 1/10,10,011	Q (17) 19, 201 L L L [11, 11, 11, 11, 11, 11, 11, 11, 11, 1	-
		 	
		2.24650 m ²	į,
'K2'	/k! - 1 10164 (1-21,33m)	1. Tulmac 1 /4 (m, 10, 2k2)	
K2	KI - 1946-1 (1-21.30/11)	The Tolumbal Land Land Land	
			
	= 23738m (1-21.330	2) Intular (0) /12 (00, Co) 262]	+
	= 23/38/0 1-2/.33/		

SOIL TESTING ENGINEERS, INC. 316 Highlandia Drive P.O. Box 83710 BATON ROUGE, LOUISIANA 70884


JOB SAMPLE - A	
3HEET NO. 11 R OF	•
CALCULATED BY DATE	
CHECKED BY DATE	


(504) 752-4790	CHECKED BY
	SCALE
$ (i) T_{RY} m = 2.0$	
<u> </u>	
$U(m,r_0,o) = \prod_{m \neq 0} m + \sqrt{1 + r_m }$	1/2·) ²
= 1.5m + V 1+4151	212 12 1 1 1 1 1
V(2, C, 0) = 1.15 x 2 + V + C/45 x	···
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2)
	<u> </u>
	<u> </u>
ambile 1 mb/p	V1+ (4mbz/0z+m-/0,)2
U(m,c,2b2) = 100 b 102 - m-10	+V17 (4m02/U2 - M-1/U1)
	1 G (4-7)/4 h m 6/4 \2
4m21/4+m6/4	+ V 1+ (4m 21/4 + m 6/4)2
- 3 m 2)/4 - m 6/4	+ V 1 + (4 m21/4 - m2/4)
	<u> </u>
22,5 m + VI+Q	2.5m)2
125m+ 1+0	19,510)2
	1 ! ! ! 1 1
22.5×2+ V 1+123	1.5×2) 20,0111 115-29
$u(2,r_0,2b_2) = \frac{22.5\times2+17.(21)}{19.5\times2+17.(21)}$	$\frac{30.0111}{78.012.8} = 1.1538$
	ן יין ישקנוע
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$k2'/k_1'=1.40=237.8(2.0)(1-$	2133×2 / 1 1 37.2737/1/538
= 4.7470 (9-	5//)! - ! - ! - ! -
	3.4738
1.40 > 1.327	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
i. need larger m	i
rea unio	
	<u> </u>
it. Try m = 2.4	
	z
	7.77 - 1-20214
U GACO 0 - [15x2.4 + V 1+ (1.5x2.	4)211 = 32/8417 + + + + + + + + + + + + + + + + + + +
	<u> </u>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×2.4) = 11538
U(2,52b) = 725621	1/5 28
10,5 ×214+ VI+(10,	5×2×0×
1/21/K1/- sh = 12720 /2 1)	1-213352.4 [4] [83.8214/1/63]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5.697/2 (.28	05) (1/3.8426)
1.40 K 1.454	
i real smiller m	<u> </u>
	
Successive trial-ord-en	ior yields m= 227
DULLENGING THAT OF CELL	
	++++

SOIL TESTING ENGINEERS, INC.
316 Highlandia Drive
P.O. Box 83710
BATON ROUGE, LOUISIANA 70884

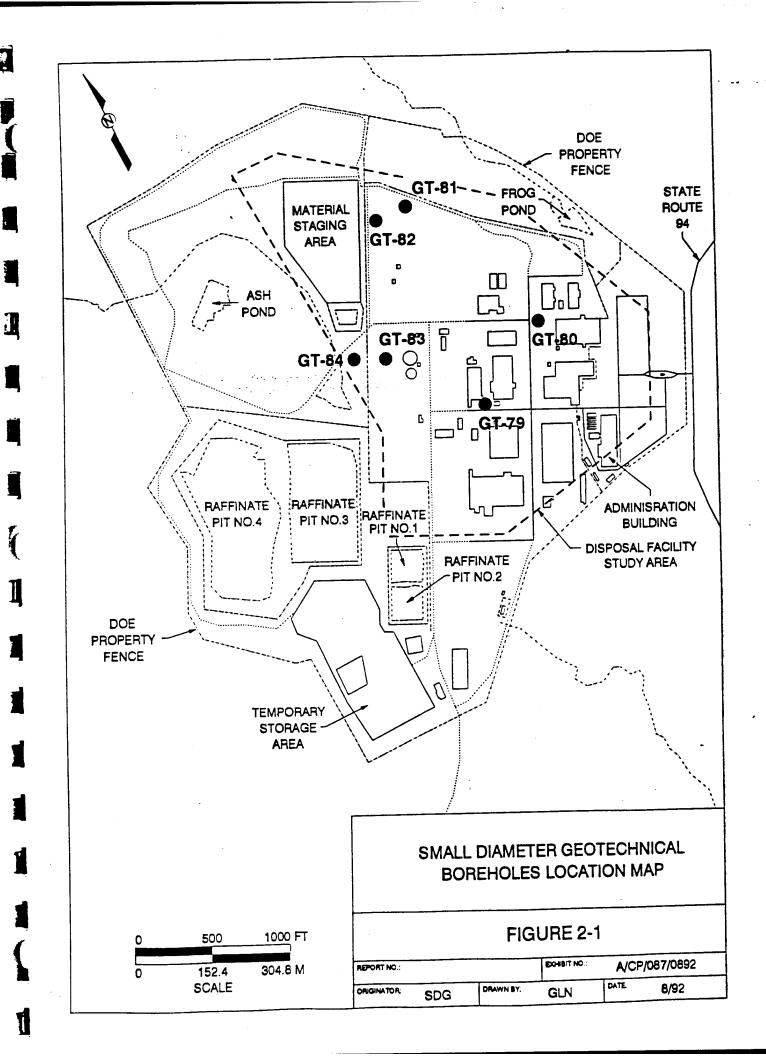
SAMPLE	- 🔠
SHEET NO. 12	OF
CALCULATED BY	DATE

	(504) 752-4	790		CHECKED	<u> </u>		DATE	-
				SCALE				
		KV	Kh					
CH	LULATE	KV	Kh.		1	 		
						 	 	 .
4/1					سرا برار	pp. 10	11/10	
Note	ONE CAN	1 1 1 1		colum	The Co		1 1 1	—
MY	Junden J	ME ATT	DONE	2 110	MAGEL	1 Fig. 7	= TexT	 !
				1 1				1
	- - - - - - - - - 			 	1			
172	eaglest c	alcolats.	الم	20 20	7	HE STAY		
1 1 1 1				1 1 1		1 1 1 1		'
1-304	minimizer:	 	- - - - - - - - - - 	 				
		9/m				 		
	=	9/1	KILE	1 1 1		1 1/2/4	111-27	
		GII		 	 	1 17		
			Dyst					——
		1 1 5			1/2			
		- 	-10-14	7 11				
				! 	1 1 -	+ +	+ + + + + +	
!		with	$D_1 =$	4,50	1"	ا الحناء ا		
	- 	111110	1.1	1 1 1				
		1 1 1	10,=	240	 	+ + +	- 	
			=	2,27				
		 		ا استاره				.
		<u> </u>		(227)(24	\ 7 \ f		1	-
	Ky=	227	+ +	4.5	- (X/3	3,21x106-	8)	
			- /	4 (24)	TAF		T	1 300
				1-11	+	+		
			5 07		<u> </u>	<u> </u>		
			197		3.21×1	01-8		1 1
		= 2.2.7	1.04	64	DIEIA			
	4			1 1 1	1 1	<u> </u>		<u> </u>
 		: 1,45	1100	101	empsec		1 1 1 1	
	Kv:	1,45	XIUI	77/	1366	╂═╁═╁		
						4-		
		- 	- - -	+	+ + + +	1 6 1	41-5]	
	Kh:	= m2	Ku		<u>. </u>	E	91-5-1	
		وخوسا ا	TUA	5×101-	りカー] /		
		= 2,2,4,5		2 7000				
	\	_ _ _ _ 			-			
	Kh=	= 7,47	VINI.	العك				1 1
 	~ ^ ^ ·	- 	1					
							- - - -	+ +-
						111		<u> </u>
	 	-i-i-i-i	- 	1 1 1				
					111	- - - - 		+ +
			业	 				
			#	 	-			+ +
		- - +	TIT					
	 		1" 		111			1 1:
			- 		- - - 			+++
								+
 	 	ME		TIT				
1 1 1			i 1	1 1 1	1 1	1 1 1 1	1 1 1 1	<u> </u>

1450 TEG 1 FILLED 32." 3/8 1508 TEG 2 FILLED 33/3/16"

SOIL TESTING ENGINEERS, INC.

CONSULTANTS A MATERIALS CONSULTANTS


316 HIGHLANDIA DRIVE . P.O. BOX 83710 . BATON ROUGE, LOUISIANA 70884 . PHONE (504) 752-4790

LAKE CHARLES, LOUISIANA (318) - 474 - 1340

DEALMONT TEYAS (409) - 839 - 8072

ATTACHMENT 7

LOCATIONS OF WATER/LEACHATE PERMEABILITY TESTING SAMPLES

ATTACHMENT 8 SUMMARY OF LEACHATE SYNTHESIS METHODOLOGY

Permeability testing was accomplished by obtaining undisturbed samples of site soils (Ferrelview Formation and Clay Till) and subjecting these samples to triaxial permeability testing (ASTM Method D-5084). Samples were initially tested with water as a permeant, then the same samples were tested with leachate permeant.

The leachate was generated by mixing liquids generated by modified batch leach testing of chemically stabilized/solidified raffinate sludge (CSS Sludge), untreated radioactive soils, and untreated chemically contaminated soils. The liquids from these leaching tests were combined at the following ratio in order to provide a representative leachate:

2:1:1 (CSS Treated Sludge:Untreated Radioactive Soils:Untreated Chemical Contaminated Soils)

This ratio of materials is based upon proposed waste quantities including bulking factors for treated wastes. These quantities are found in the latest version of the PMC's Waste Management Quarterly Report.

Additional details relating to the leaching methodology and associated sampling of waste materials are presented in the pertinent references listed in Attachment 10.

ATTACHMENT 9 COMPARATIVE CALCULATIONS TRAVEL TIME AND PERMITTIVITY

COMPARISON OF HYDRAULIC CONDUCTIVITY DATA

40	1				MOTERNA		PERMITTIVITY	TRAVEL TIME
7 0.40 30 2.5E-07 8 0.40 20 1.25E-06 8 0.40 20 3.9E-07 8 0.40 20 3.2E-08 9 0.040 20 3.8E-08 9 0.40 20 3.8E-08 9 0.040 0.08 20 1.9E-07 9 0.40 0.08 20 6.8E-09 9 0.40 3.4E-08	COND (K)	RAULIC UCTIVITY (cm/sec)	POROSITY [n] (⁶)	EFFECTIVE POROSITY [n.]	FORMATION THICKNESS [b] (ft)	VELOCITY [P] (cm/sec)	[t] (sec ⁻¹)	[V] (YEARS) (10)
0.40 0.08 30 1.25E-06 0.40 0.08 20 7.7E-08 0.40 20 3.9E-07 0.40 20 3.5E-08 0.40 20 3.6E-08					30	2.58-07	1.1E-10	116
0.40 20 7.7E-08 0.40 0.08 20 3.9E-07 0.40 20 3.2E-08 0.40 20 3.8E-08 0.40 20 3.8E-08 0.40 20 1.9E-07 0.40 20 3.4E-08		1.0E-07	0.40	1		10-83C t	,	23
0.40 0.08 20 7.7E-08 0.40 20 3.9E-07 0.40 0.08 20 1.6E-07 0.40 20 3.8E-08 0.40 20 1.9E-07 0.40 20 6.8E-09 0.40 20 3.4E-08				0.08	000	7.4.32		036
0.40 0.08 20 3.9E-07 0.40 0.08 20 1.6E-07 0.40 20 3.8E-08 0.40 0.08 20 1.9E-07 0.40 20 6.8E-09 0.40 20 3.4E-08	١	2 18-08	0.40		20	7.7E-08	5.1E-11	067
0.40 20 3.2E-08 0.40 0.08 20 1.6E-07 0.40 20 3.8E-08 0.40 20 1.9E-07 0.40 20 1.9E-07 0.40 20 3.4E-08		91.0		0.08	20	3.9E-07		50
0.40 0.08 20 1.6E-07 0.40 20 3.8E-08 0.40 20 1.9E-07 0.40 20 6.8E-09					20	3.25-08	2.15-11	604
0.40 20 3.8E-08		1.28E-08	0		00	1.68-07		121
0.40				0.08	0.4			7.0
0.40 20 1.9E-07 20 0.48 20 3.4E-08		1 5 T-08	0.40		20	3.85-08	2.55-11	976
0.40 20 6.8E-09		000		0.08	20	1.98-07		103
0.08	1	60	0 40		20	6.88-09	4.4E-12	2865
		7.12		0.08	20	3.4E-08		573

EXPLANATION:

- 10 CSR 25-7 Basic regulatory criteria are 30 ft of soil with K= 1.0E-07 cm/sec.
- Site suitability data on potential location of a disposal facility: Collapse potential and permeability.
- Largest logarithmic mean value from Table 2.
- Largest measured value for water from Table 3.
- Largest measured value for leachate from Table 3.
- Average total porosity from unpublished data MKF & JEG 1992 Draft.
- Estimated average effective porosity from 6 .
- Seepage velocity V= Ki/n
- Permittivity P = Average hydraulic conductivity + thickness (Koerner, R.M. 1990. Designing with geosynthetics. Prentic-Hall.)
- Travel time t = 6/V

ATTACHMENT 10

LIST OF PERTINENT REFERENCE DOCUMENTS

The following documents are listed for reference in describing background and support activities associated with this effort. Copies of these reports have been submitted under separate cover:

Modified batch leach testing is described in the "Batch Leach Testing Plan", MK-JEG, Rev. 1, Nov. 92.

The chemical soil samples were collected in accordance with the "Soil Sampling Plan for Column Leach and Batch Tests and TCLP Analysis", Rev. 0, May 92.

The radioactive site soils were collected in accordance with the "Stabilization /Solidification/Dewatering Sampling Plan", MK-JEG, Rev. 0, May 91.

The undisturbed soil samples were obtained in accordance with the "Sampling Plan for Determination of Hydraulic Properties of Undisturbed Soils in the Weldon Spring Disposal Facility Study Area", Rev. 1, MK-JEG, Oct. 92.